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iscrete Fourier techniques are increasingly be- 
ing taught as material detached from fundamen- D tal continuous-time Fourier analysis. The 

student is left with an unclear understanding, if any, of 
the very significant relationships between magnitude 
and phase spectra generated digitally, and the continu- 
ous-time signal which is being analyzed. This article 
tells the story of three undergraduate students who 
discover the DFT, armed only with a knowledge of 
analog methods. 

Smaller and Smaller Lies 

A professor once said to me “Education is the process 
of telling smaller and smaller lies.” I wish I could 
remember who it was so I could give proper attribution 
for that wonderful quote which I have used so many 
times in my own teaching. Educators (whether they be 
professional or otherwise) do not ordinarily tell ma- 
levolent ‘‘lies.’’ More accurately put, the state of under- 
standing and knowledge of the learner does not always 
permit the whole “truth” to be told. By simplifying and 
omitting details, the teacher lays a foundation for the 
next levels (and there may be several) of under- 
standing, the more complex details of which can be 
presented when the student is ready to grasp them. The 
simplified, alleviated-detail, versions of the subject 
sometimes contain ‘‘lies’’ of omission or inaccuracy for 
the sake of simplicity. The process is recursive; at each 
level the “lies” get smaller. 

At some point, all of us stop learning about any 
given subject. Inevitably, the learning stops before we 
achieve the consummate “truth’ about most subjects. 
In engineering, this can have unfortunate consequences 
for design and innovation. It is particularly unfortunate, 



however, when the incomplete version has unnecessarily 
supplanted the complete understanding; that is, when the 
student could have just as easily grasped the complete picture, 
but is left with an incomplete understanding. 

Such is the case with the discrete-time Fourier transform 
(DTFT) and the discrete Fourier transform (DFT). These 
transforms are at the heart of modem spectral analysis, and 
since they are almost invariably used to analyze problems 
arising in continuous time, it is of paramount importance that 
the analyst recognize the relationships between discrete and 
continuous spectral techniques. While the historical develop- 
ment of discrete Fourier techniques is rich and detailed [1,2, 
31 the fundamental roots of the methods lie in the Fourier 
series, as is clearly brought out in the often-cited paper by 
Cooley and Tukey 141. In this sense, the essence of the DFT 
was discovered by Fourier in 1807 15, p. 4311, long before the 
conception of the digital computer. Earlier in this century, 
Fourier’s ideas were brought to bear on the contemporary 
sampled-data problem by Shannon in the United States [6,7] 
and Kotel’nikov in the Russian literature [6, 81. However, 
much of the original motivation for the development of dis- 
crete Fourier techniques has been lost in recent tutorial litera- 
ture. 

The January, 1992 issue oflEEE Signal Processing Maga- 
zine celebrates the 25th anniversary of the FFT. The year 1967 
coincides roughly with the genesis of the modem discipline 
we know as “digital signal processing.” Somewhere along the 
way, we have lost the early understanding of the DFT. Re- 
spected teachers and textbook writers have found it expedient 
to implicitly treat the DTFT and DFT as entities apart from 
the more fundamental principles upon which they are built. 
At best, some obtuse attempts may be made to tie the subjects 
together using “impulse sampling,” a “lie” from which many 
students never recover. It is assumed that the student, at the 
next level of understanding, will make the fruitful ties back 
to the classical theory which enriches the utility and meaning- 
fulness of the discrete transforms. Regrettably, this next level 
of understanding may not be realized for many practitioners, 
resulting in a career of spectral analysis based on an incom- 
plete understanding. In my own teaching, I feel uncomfort- 
able leaving the students with the “lie” that the DTFT and 
D l T  are something different from what they already know 
about continuous transforms. Fortunately, the following se- 
ries of events occurred in a class I was recently teaching. If 
you doubt the veracity of this story, please reread the opening 
sentence of this article. 

Too Much Homework 

Tom, Dick, and Mary were juniors taking a course in signal 
and linear system analysis. They were just completing the 
part of the course covering Fourier analysis of continuous 
signals, and were working together on an assignment with 
a seemingly countless number of problems involving the 
plotting of magnitude and phase spectra based on the 
Fourier transform. 

“This is too much homework,” said Tom. “We’ll never 
get this all done by hand.” 

Dick suggested using one of the personal computers in the 
next room to “at least do the plots.” Mary pointed out that the 
plots were continuous curves and that they could at best plot 
samples of the spectra. She suggested that if they could find 
closely spaced samples, then maybe they could “connect the 
dots” to get at least an approximation to the desired spectra. 
Soon they were staring at the first signal xl(t) and its Fourier 
integral’ 

--m 

wondering how they would be able to compute samples of Xi 
using discrete computations. 

“We can’t do an integral on the computer even if we just 
want values of  XI(^, at samples off,” Tom correctly noted. 

They thought for a while and almost abandoned the com- 
puter when Mary recalled a point which ultimately saved the 
evening. She remarked that the Fourier series (FS) resulted in 
a sort of sampled frequency domain. Dick thought that was 
irrelevant because “we are not working on FS problems- 
xl(t) is not a periodic signal,” Dick observed, “so I don’t see 
how we can apply the FS.” 

Mary pointed out that only one period of a periodic func- 
tion is ever used in constructing a FS. That prompted Tom to 
suggest, “Let’s make xl(t)  periodic, and see what we can do 
with it.” 

Dick was still skeptical, but he agreed to go along with the 
plan. “What period should we give it?” he asked. “I don’t 
know,” admitted Mary, “but let’s try a general period, say Ty, 
and call the periodic signal y(t). Then we’ll have this,” Mary 
said, writing on the blackboard 

She then sketched the signalxl(t) (Fig. la), noting that it has 
a “time width” Ti = 8. She also sketched two cases of y(t): 
Case 1 in which Ty > T I  (Fig lb); and Case 2 in which 
Ty I T I  (Fig. IC). 

“I’m not sure where this is going,” said Tom, “but let’s 
write the FS for y(t).” He wrote 

m 
( 3 )  

m = - m  

’ By using this definition of the Fourier transform, rather than the similar one 

based on radian frequency, XI(O) = fe-’“ dr , we avoid some scale factors 

in the following discussion. The developments remain essentially unchanged 
if the radian-frequency definition is used. 

m 

- 
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1 .  (a)  The signal xl ( t ) .  The “time width” is Ti = 8 s. (6) The signal y ( t )  when the period Ty = 
9 is chosen greater than T I .  (c)  The signal y(r) when TJ, = 6 I Ti. 

Then he realized they were onto 
something. “These coefficients are 
just the samples of the FT of the origi- 
nal signal (with a scale factor),” he 

said as he wrote “-Xl(mL,)” at the 

end of the last line. 
“It looks like we’ve gotten the 

samples in the frequency domain that 
we want,” observed Mary. “Let’s 
summarize. If we take samples of the 
Fourier transform Xl(mf,) with fy = 
l/TJ, T! > T I ,  then scale them by& = 
1 /T,., 

1 
T, 

we have the FS coefficients for a pe- 
riodic version of xl(t) whose “copies” 
do not overlap. We have the samples 
of the FT that we want, and appar- 
ently haven’t lost any information 
since we can recover xi(t) from the 
samples by constructing the periodic 
waveform using Eq. 3 ,  then taking the 
‘primary’ period.” 

“What would happen if we tried 
the same trick with frequency sam- 
ples taken at f ,  = 1/T, with T,, 5 TI?” 
Tom wondered. “I’ll bet those sam- 
ples are still FS coefficients, but for 
the ‘overlapped’ version of y ( t )  in 
Case 2.” After playing with the prob- 
lem for a while, the group confirmed 
that this was the case. They knew that 
a periodic function did not have a 
valid FT, but that one could be con- 

Ty12 

-TJ2 

(4) structed using impulse functions. They had been wamed 
about the mathematical hazards of impulse functions, but, for 
lack of anything better to do, they finally resorted to taking 
the FT of the signal they had constructed using the FS. Since 
they weren’t sure that this manufactured signal were truly y( t ) ,  
they called it y’(t), and wrote 

a, = y(t) e-J2” mh ‘ dt 

“Hey, since we’re only using one period,” Dick noticed, 
“in Case 1 we can replace y ( t )  by x,(t) in the coefficient 
computation,” and he wrote 
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Now using the fact  that  

c6 (f- mfq’) is the FT of the time 

m 

m = -m 

m 

signal T y  c6 (t - mT,) [9, p. 7231, 

and the property that multiplying two 
l T s  corresponds to convolution of 
their time functions, they wrote, 

m = --m 

“OK!” exclaimed Mary, “Now we 
know that we can always obtain at 
least a periodic version of xl(t) using 
scaled samples of X / ( f )  as FS coeffi- 
cients. If we want one period of y(t)  
to be exactlyx,(t), we must make sure 
that the frequencies of the samples of 
X d j )  at mf4 = m/T, are close enough 
together, T, > TI.” 

Dick remarked that they were still 
a long way from being able to plot 
spectra on the computer. “To work 
with these spectra on the computer, 
we must get rid of the continuous 
signals in both time and frequency 
domains,” he said. “At least we know 
what we can do with frequency sam- 
ples,” he conceded. 

“We talked a lot about time-fre- 

-f* 0 f, 

41, -31. -21, 4, 0 I.. 1.5f. 21, 31. 41, 

2.(a) A hypothetical FT, X i ( f l .  for discussion purposes. Note that XI@) is generally a com- 
plex function of f ,  which can therefore only be correctly drawn in three dimensions. How- 
ever, since xl(t) is real and even, the FT XI@) happens to be real and even in this case. (b)  
The periodic FT Y@) when f s  > 2f b. (c)  The periodic FT Y@) whenf, I 2fb. 

quency duality in class,” recalled Tom, “and it seems that we 
should be able to ‘reverse’ the process we’vejust used in order 
to get samples in the time domain.” 

‘‘Yeah,” agreed Mary, “1’11 bet there’s a general principle 
here: If we’re willing to make one domain periodic, all the 
information will be contained in samples of the other. But, the 
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samples in one domain have to be 
close enough to keep the periods from 
overlapping in the other (if that’s pos- 
sible). Let’s try Tom’s idea.” 

Since they didn’t know what X,y) 
looked like, Mary sketched a hypo- 
thetical version of X , ( f )  on the board 
(Fig. 2), carefully labeling its one- 
sided bandwidth asb.  She then drew 
two periodic functions, both with pe- 
riod&, and both labeled Yo. In Case 
1 ,  the period f r  > 2fh, and in Case 2 ,  

The group paused for a moment to 
fc=<2fh. 

0 0.125 025 0.75 

F W W W  f W) 

I 
I .  Magnitude spectrum /Xi(f)/ for- the signal .xl(ti, plotted at the frequencies f = kl32 on 

consider an important detail. Tom ob- o <f< 1/2. Since the signal is real and even, Xl(f) = /Xi(f)/. The numerical label at f = 
jected to the sketches on the grounds 0.3125 will be sign8cant in a future discussion. 
that X l ( f )  is a complex function which 
could not be drawn in two dimensions. However, Mary cor- 
rectly pointed out that the signal x,(t) is real and even in this 
case, implying a real and even FT. “We’re just lucky here,” 
Mary noted, “but 1 guess in general we have to be careful with 
such pictures because we are really adding complex num- 
bers.” 

“I guess we could still get the idea of frequency overlap 
using these diagrams,’‘ Dick observed. Dick was correct, but 
the magnitude spectra do not simply add directly as we might 
infer from these pictures, I told them the next day as we 
discussed this point in my office. Textbooks do not always 
make this point clear, and we must be careful with such 
sketches. 

The other detail that they neglected is the fact that a signal 
cannot be both time-limited, as in the case with xl(t), and 
frequency bandlimited, as implied by Mary’s sketch of X,y) 
[9, p. 1541. This negligence tumed out to be beneficial, for, 
had they remembered this fact, they might have been discour- 
aged from making X , ( f )  periodic. We discussed this point at 
some length the following day. 

The students began to scrutinize the cases of Figs. 2b and 
2c. In either case, they speculated that the periodic function 

m 

could be represented by a “FS” whose coefficients were 
related to samples of time. It was simply a matter of reversing 
the roles of time and frequency in the analysis. Dick guessed 
correctly that the time samples would be xl(nTs),  with Ts = 
I &  by making an analogy to what happened in the dual 
problem. 

Following the analysis in the frequency-sampling prob- 
lem, the group quickly discovered that their intuition was 
correct. The periodic (and complex) frequency function Y ( f )  
could be represented by a “FS.” They first computed the “FT” 
for the “signal” Xl( f ) ,  calling it x’l(~), 

They noted that this “FT” is very close to the time signal, 

ca 

-m 

but agreed to ignore this fact temporarily in order to preserve the 
analogy to the frequency-sampling case. They carefully wrote 
down the “FS” for the periodic function (Eq. lo), lettingfplay 
the customary role of “time,” and fs play the role of the funda- 
mental “period.” Accordingly, l#s = Ts is the analogous quantity 
to fundamental “frequency.” In these terms, the “FS” is 

The “FS coefficients are scaled samples of the (reversed time) 
waveform x’i(t) = ~ i ( - - t )  so 

m 

n=-m 

The group decided they didn’t like using the samples in 
reversed time, so they made the simple change of replacing 
-n by t i ,  to obtain 
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m m 

“We’ve got it!” Mary said excitedly. “As long as we take 
fs = UT, > 2fh, then the first period of Y ( f )  will be exactly 

“But we need samples of Xl(f ) ,”  Dick reminder her, “in 
order to plot them and work with them on the computer.” 

“No problem,” said Tom, “we simply calculate Yo =X,( f ) ,  
at any frequency we want. For example, take the frequency 
fo,” and he wrote on the board 

XIV).’’ 

m (17) 

n =-m 

“This is valid for any frequency sample -fh Sf0 < fh since 
that’s the range over which Yo = X/(f ) .” 

Using sampled values of the given signals, and the expres- 
sion they had derived in Eq. 17, Tom, Dick, and Mary were 
able to computer generate the plots for 
each of their homework problems. 
Not knowing the bandwidth, fb, for 
any of the signals, they had to guess 
the sample period T, to use in each 
case. They arbitrarily chose T,  = 16 = 
1 s for all signals. In some cases, this 
was satisfactory; in others, quite un- 
satisfactory. The magnitude spectrum 
for result for signal x/(t) is shown in 
Fig. 3. (Note that the phase is either 
zero or pi radians at every sample, 
since the signal x/(t) is real and even, 
resulting in a real, even lT.) Figure 3 
was obtained using Eq. 17 at the fre- 
quency samples VJ32 = k/32 for k = 
0, 1, ... 16. Only the positive frequen- 
cies are plotted, since the spectrum is 
an even function of frequency. 

When we met in my office the next 
day, Tom, Dick, and Mary were justi- 
fiably excited about their discovery. 

Gold Stars: Part I 

I commended them for their innova- 
tion, and took the opportunity to ex- 
plain just how profound their work 
was. “First of all,” I told them, “in the 
time sampling case, what you have 
discovered is the essence of a funda- 
mental result in information theory 
known as Shannon’s Sampling Theo- 
rem [6,7]. This principle says that if 
we sample a time waveform at a high- 
enough rate,fs = l/Ts > 2fbr then a 

complete continuous-time signal like x i ( t )  is recoverable 
from the time samples.xi(nTs). In theory, the method for doing 
so is obvious from your work: Form the “FS” for Y(f)  as in 
Eq. 16. The first period of Y ( f )  is the FT X i ( f ) ,  so we can 
inverse FT this initial period to recover the signal xl(t). In 
practice, we apply a lowpass filter to recover the signal 
occupying the primary frequency band. 

“This lowpass filtering operation can be shown to be a 
discrete convolution operation involving the samples of the 
signal as inputs to the filter. The process is usually called 
interpolation, since it allows us to interpolate between sample 
values in the signal. 

“As long as you sample xl(t) fast enough, the FS Yo is an 
excellent candidate for spectral analysis of the original signal, 
since it represents an exactly periodic version of X / ( f ) .  But 
even when samples are not taken fast enough (or cannot be 
because of infinite bandwidth), Yy> is closely related to X , ( f )  
in that it is a periodic, but aliased, version of X , ( f ) .  The term 
aliasing refers to the overlap in the frequency spectrum which 
causes frequencies abovefsI2 in the signal to be confused with 
those in the band 0 If <f,i2.” 

1 \ 
:: 0 0 0.3125 0.625 0.9375 1.25 1.5825 1.875 2.1875 2.5 

Fnqumcy, f (Hz) 

0 0.3125 0.025 0.8375 125 1.5625 1.875 2.1875 2.5 
la0 

to 

F 1  

i :o: 
0.Wl 

0.m1 

. “True” magnitude spectrum for the signal xl ( t ) .  ( a )  Magnitude plotted on a linear scale. 
(h)  Log scale. 
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FT). We studied two signals in their 
homework in some detail to under- 
stand this point. First, I generated a 
plot representing a very good ap- 
proximation to the true continuous- 
time magnitude spectrum of signal 
x , ( t )  (Fig. 4a) for the sake of discus- 
sion. “You were lucky in this case,” I 
told them, “since there is energy in 
this signal beyond your assumed 
bandwidth of&/2 = 1/2. This is more 
evident on the log scale (Fig. 4b). 
However, the amount of energy is 
negligible compared to that in the 
range 0 S f <  1/2, so there is little dis- 
tortion of the spectrum on the range 
you plotted. (Imagine what would 
happen if Fig. 4a or Fig. 4b were made 
periodic with periodf, = 1 as above.) 
However, there is some aliasing as we 
see, for example, by comparing your 
sampleatthefrequencyf=0.3125,with 
the same frequency on the ‘true’ spec- 
trum. We see that, on your plot, 
K1(0.3125)l = 0.723, whereas on the 
‘true’ spectrum, lX1(0.3125) I =0.520.” 

So we concluded that we will not 
always be able to “guess” a reason- 
able sample rate. The most flagrant 
example of aliasing occurred in the 
next problem which involved the sig- 
nal 

x2(0 = 
e4.03‘ sin(%) [u(t - 1) - u(t - 93.1)] 

(18) 
with u(t), the unit step function, de- 
fined to be unity for t 2 0 and zero 
otherwise. Based on our previous dis- 
cussion, the group now understood 
that a sample rate offs = 1 was inap- 
propriate since the energy in this 
damped sinusoid is concentrated 
a round the f requency  
fo = 5/2n = 0.796Hz.“A sampl ing  ‘ 

rate of f s  = 2 (0.796) = 1.6 Hz is 
needed to prevent ‘overlap’ in the pe- 
riodic FT,” Tom noted correctly. 

. (a )  Alleged magnitude spectrum for signal x2(t) on the range 0 2 f I 1t2 obtained by using 
Eq. 16 with T,$ = I at frequency samples f = kl128, k = 0, I, ..., 64. (h) Extending the compu- 
tations of part (a)  to include the range -1 2 f < 1 =fs. (c) The true spectrum for signal x2(t). 

We digressed momentarily to discuss the phenomenon of 
aliasing. The students pointed out that they didn’t know what 
sample rate to use for the various signals in their homework. 

had not known the bandwidths of the signals, since the task 
of the problems was to plot the spectra. By using an arbitrary 
sample rate of& = 1 Hz, they had sometimes gotten a poor 
result (in terms of the approximation to the continuous-time 

“What happened in this case is very revealing,” I told 
them. “Look at your spectral magnitude plot (Fig. 5a). It 

energy at the frequency of the sinusoid (which is not even in 
the range of Your Plot). What happened?’’ 

I suggested that they extend their plot to include one or 
more periods of the “overlapped” FT. Using the program 

Even if they had been aware of the sampling theorem, they to indicate energy atf= o.2 Hz, but to show 
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6. The N = 15-length discrete-time signalx3(nTS), n = 0 ,I ,..., N - 1 ,  with Ts = I tns, used as an example in the development of the DFT. 

they had written the night before, they did so (Fig. 5b), 
knowing that the result would be periodic with periodf, = 1. 
While they were doing that, I plotted the true spectrum of 
x z ( t )  (Fig. 5c). 

“I see what happened,” said Tom. “The bogus peak we got 
in the range 0 Ifs 112 is the result of one of the copies of the 
true spectrum that got shifted into that range.” They identified 
the “correct” peak in the periodic spectrum and convinced 
themselves that this problem would not have occurred if a 
proper sampling rate had been used. 

“Now let me tell you a further significance of your result,” 
I continued. “The ‘FS’ Yo you’ve discovered is very close to 
what is known as the discrete-time Fourier transform (DTFT) 
for the discrete time signal consisting of the samples 
xl(n7‘),  n = ...- 1, 0, 1, 2, . . .. Usually, books will tell you that 
the DTFT is the something like the following.” I wrote on the 
board 

“That’s just our ‘FS’ except for a scale factor 16,” Mary 
said. “Yes,” I agreed, “which happened to be unity in your 
numerical work anyway. So can you tell me the significance 
of the DTFT? Think about what we’ve just worked through.” 

“Well, we wanted to be able to plot spectra using the 
computer, so we had to have discrete samples in both do- 
mains,” Tom said. “Yes,” I interjected, “and more generally, 
computers are being used to replace all kinds of analog 
systems and filters so that the computations, and in this case, 
spectral analysis, must be done with discrete samples. Usu- 
ally, however, the samples relate to continuous phenomena 
since most signals are continua. So we’d like to be able to 
perform ‘meaningful’ spectral analysis using the computer.” 

“You mean we want to be able to relate the results to the 
continuous world, since that’s where they really come from,” 
Mary remarked. 

“Precisely.” 

“So the DTFT is very important because it allows us to 
compute a periodic replica of the continuous FT using just 
time samples,” Dick noted. 

“As long as we sample fast enough in time,” I added. 
“Now what is the effect of the scale factor omission in the 
definition of the DTFT?” I asked. 

“No big deal,” said Tom, “it just means that the DTFT is 
a scaled periodic replica of the original FT.” Looking back at 
his notes from the night before (Eq. lo), he wrote 

“So is the DTFT something new?” I asked them. “Or is it 
a natural extension of classical theory?” The question was 
rhetorical, and they were very proud of their accomplishment. 

“When you see the DTFT in your work with discrete-time 
signals, you will forever remember its origins since you 
worked so hard to discover them.” 

“Now I have a challenge for you,” I said after they had 
congratulated themselves. Tom, Dick, and Mary looked 
astonished since they had been awake most of the night facing 
what they considered to be a more than sufficient challenge. 
“In the first part of your work, you show how to use a set of 
frequency samples to represent a continuous-time waveform. 
In the second part, you show how to use time samples to 
represent a continuous-frequency function. (Then you use 
that result to compute frequency samples. To use a computer 
for spectral analysis, it would be useful to have a transform 
which goes back and forth between sets of samples. You are 
close. See if you can find such a transform.” 

“Let me give you a hint,” I added. “You notice that your 
DTFT computationuses a doubly-infinite number of time 
samples.” 

“Yeah,” Tom agreed, “we had to chop off the signal after 
a large number of samples if the original signal was not 
‘time-limited’. I mean if T I  = -. So I guess we only got an 
approximate spectrum.” 
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“Yes, and that will always be the case in discrete-time 
analysis,” I pointed out. “You can never enter an infinite Suppose T, is the sampling period you choose and that you 
number of time samples. There are smart ways to t”ite get N samples  on the  nonzero  range,  
long signals to get better estimates of the spectra, but that’s x3(0), x 3 ( ~ ~ ) ,  x 3 ( 2 ~ , ) ,  ..., X ~ ( N  - 1 ) ~ ~ .  These samples comprise 

sketched the samples on board for T, = 1 ms (Fig. 6). which starts at time t = 0 and ‘ends’ at some finite time. An 
example is xz(t )  in your homework, but the next one, xdt ) ,  is 

so x3(t) is nonzero on 0 I t < 15.1 ms. 

another story [lo,  111. Let’sjust assume that we have the nonzero part of the discrete-time signal . ~ ( n  n.’’ 1 

X 3 ( t )  bandlimited to finite f h , ) )  they wanted to 
know. “and, if SO, is & > 2fh?” simpler: 

x3(t) = (0.9)-loaot [u(t )  - U ( ?  - 0.015 

1 

0.0 

0.8 

0.7 

0.1 

1 :  
0 3  

0 2  

0.1 

0 
0 

1 

0.9 

0.8 

0.7 

1 :: 
0.3 

0 2  

0.1 

0 
0 

1.4 1 

” -  

“xj( t )  can’t be bandlimited because it is of finite time 
duration. However, it can be assumed to be practically ban- 
dlimited to some finite fh, either inherently or because of a 

pre-processing lowpass filtering op- 
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eration. For your theoretical work, 
assume that there is practically an 
fh < m but that you don’t know it’s 
value,” I responded. “This means that 
you have to be prepared for some 
aliasing since you don’t know the 
proper value offs.” 

“I appreciate what you did last 
night! Now see if you can take it to 
the next logical step.” 

I’d like to tell you that Tom, Dick, 
and Mary excitedly left my office, 
eager to tackle this new challenge. 
However, this is a true story. Some- 
thing unfit for print was muttered in 
the hallway as they walked away. 

Onward to the DFT 

The three students puzzled over Eqns. 
7 and 9 for a while thinking maybe 
they could just use a similar equation 
to Eq. 7 at times t = nTs to get the time 
samples they wanted. “But we don’t 
really have X 3 v )  to sample,” Tom 
pointed out. “What we have is a peri- 
odic version of X 3 v )  that we again 
call Yo. In this case, since we have 
only N time samples, Eq. 16 can be 
simplified.” He wrote 

N- 1 (22) 

“~ 
f l = O  

“Of course, we can compute any 
samples off that we want, but which 
ones?” Dick wondered. They pon- 
dered this for a long time. Mary reit- 
erated the point that the signal xj(t) 
could not be frequency bandlimited 

0 5 10 15 

because it is time-limited. Neverthe- 
less, she suggested that they go back 
and look at what happened in their 

7. The signal y(nT,) of Eq. 24 when (a)fu = llNTs =fa; (bjf? < llNTs; (c j f ,  2 I I N T S .  Each 
waveform repeats indefinitely in both positive and negative time. 
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first analysis in which X / ( f )  was as- 
sumed (incorrectly) to be frequency- 
limited tofh. “Look at Eqs. 7 and 9,” 
she instructed her classmates. “Zf we 
had samples of XjV, to work with, and 
ifwe took these samples at spacingf,. 
= l /NT,  =&IN, then Eq. 7 would pro- 
duce, according to Eq. 3:” 

m (23) 
y( t )  = C x3(t - kNTs) 

k = -  

“And, if we used Eq. 7 at times nTs, 
then we would get the numbers:” 

(24) 
y(nTs) = x3(nTs - kNT,) 

m 

k = - m  

( R  0 fJ2 
“fW) 

8. Hypothetical FT Y3(3  defined to be identical to Y ( f ,  of Fig. 2c on its primary per iod .  

They sketched the sequence y(nT,) on the blackboard (Fig. 
7a) and discovered that the first N points were exactly the 
sequence xj(nT,). In fact, they varied the value off, = 1/T, and 
discovered that using a smaller value off, = 1/NT, would 
cause “extra space” (zeros) between the copies of x/(t) in y( t )  
(Fig. 7b), and “overlap” (time aliasing) of the copies would 
occur iff, were chosen too large,& > 1/T, (Fig. 7c). 

“But we don’t have the samples of X j ( f )  to work with,” 
noted Dick. “We have only a periodic, maybe aliased, version 

“I have a hunch that samples of Y v )  taken at the right 
spacing f ,  SJ iN  will still give us back the periodic sequence 
(Eq. 24),” Tom said. ”Something like what happened when 
we sampled the aliased periodic FT last night (Eqns. 7-9),” he 
added with some uncertainty in his voice. 

They knew that this case had to have something to do with 
the first analysis they had done the night before concerning 
frequency sampling. They began to pore over those results. 
“Look at the pattern we followed there,” said Mary. “We had 
a bandlimited signalxl(t) and we let it become periodic so that 
we could discretize the frequency domain. I think we want to 
do the same thing here. Forget the fact that Y(f)  is periodic. 
That’s what’s throwing us off. Just look at one period of it,” 
and she wrote on the blackboard the following definition: 

of Xjv).” 

IO, otherwise 

and drew the sketch in Fig. 8. “Of course, we’ll let y j ( t )  be 
the corresponding time signal. I’m not sure what y3(t) is, but 
I know we will make it periodic if we build a FS out of 
samples of Yj( f ) ,  and, if Tom’s hunch is right, the signal y j ( t )  
will match y(t) at the sample times nTs,” Mary deduced. 

“By chopping off Y v )  to create Yjv),” Dick pointed out, 
“we force yj(t)  to be a continuous-time signal.” He also 
observed that yj(t)  would be exactly xj(t), and Y.{(f) = X j ( f )  if 

the original signal, x~(t) had been bandlimited and sampled 
fast enough. 

“Right on both counts,” said Tom, “but Mary is consider- 
ing the general case in which Y v )  and YjV, might involve 
some aliasing. I also see what she’s trying to do by making 
y.&) a continuous-time signal. She’s taking us back to the very 
first problem we studied last night- continuous-time, dis- 
crete-frequency .” 

“I see where we’re going,” responded Dick, “but if we 
follow the approach we did last night, we’ll end up writing a 
FS for a periodic version of yj(r), not y(t). Then we’ll evaluate 
at discrete times, and end up with samples of a periodic 
version of yj(t) ,  not samples of y(t) ,  and certainly not the 
samples xj(nT,).” 

“Go ahead and do it anyway,” Tom persisted. ‘‘I think it 
will work.” So they began to meticulously follow the steps 
that had become familiar by now. First they created the 
periodic extension of the somewhat mysterious signal yj(r): 

m 

w(t) = y3(t - iT,]) 
I = -m 

anticipating that they would sample Y3(f) at spacing fw = 
UTw. They all agreed that Tw would have to be some multiple 
of Ts because the period would ultimately have to be some 
integer number of samples, say, 

1 
MTs 

T w = M T ~ ,  or f w = -  

Then they wrote the FS: 

m 

k - m  

T,J2 

They knew from past experience that whether w(t)  were 
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an “overlapped” version of y3(t)  or not (see Eqs. 5-9), 
They noted that they could replace Y 3 0  by Y O  by restricting 

1 (30) the summation: 
(32) yk = - Y3(kfw) 

1 
TW 

TnJ 
w( t )  = - C Y(w%,) eJ2*IFfHr 

Therefore, k 

i i: 

m 

k=-m 

-fs fs (31) k such that - 2 -  < kfnz < - 2 

They now had frequency samples on the right side with 

c ‘i 
* 7  

.j A, 
- .  

0 

Id 

9. Samples of the (a)  magnitude, and (b)  phase, spectra of the discrete-time signal x3(nTs) of 
Fig. 6 obtained using Eq.  39. (c)  Magnitude spectrum of the continuous-time signal x3(t) of 
Eq. 21. 

which they could compute time sam- 
ples. In particular, they wanted sam- 
ples at times nT,, n = 0,  1, . . . , N-1. 
So they evaluated w(t) at the discrete 
times, 

(33) m 

w(nTs) = - 1 ZY(k fw)  e j2*kfwnTs 

“Great,” muttered Dick, sarcasti- 
cally, “we can compute samples of 
some signal we don’t understand or 
want.” 

“Hold on,” said Mary. “These are 
samples of a periodic version of y&). 
We just have to figure out how y3(f) is 
related to our original time samples. 
“Look,” she said, as she wrote 

TW 
k = - w  

“Hey, that just looks like a FS coeffi- 
cient computation for the periodic 
Yo,’’  exclaimed Tom. 

Mary was busy rifl ing back 
through her notes from the night be- 
fore. “Yeah, we’ve seen that before!” 
After a brief search she rediscovered 
Eq. 14 and wrote, triumphantly, 

y3(nT.,) =fs P-~I = x3(nT.,) (35)  
then, 

Recalling their agreement (Eq. 27), 
she finally wrote 
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m 

w(nTs) = x3(nTs - &ITs) 
2z-x 

1 -  

0 

(37) 

1 T ? ? T ? ? ? ? ? ? T 1 

“Voila! w(nT,) is just a periodic, possibly aliased version 
of x3(nT,),” Tom said excitedly. “As long as we take M 2 N, 
then the samples MO), w(T,), ..., w((N-1)Z’J will be the time 
samples we are looking for!” Referring back to Eqs. 32 and 
27 with M = N, he wrote 

n = 0, 1, ..., N-1 

“That gives us the N time samples in terms of N frequency 
samples,” said Dick. “Now we need to get the N frequency 
samples using the N time samples. I think we can use the result 
we used for the plots in our homework.” 

They dug back through their notes and found Eq. 16. 
Noting that x,(nT,) is zero except for the first N points, they 
wrote 

(39) 

N- 1 
-j2nn kiN -fi kfs fi , uchthat-<-<- 2 - N  2 

1 
= - C x 3 ( n ~ ~ )  e 

f l = O  
fs 

They computed the 15 samples in frequency using Eq. 39 and 

the corresponding magnitudes and phases shown in Figs. 9a 
and 9b, respectively. By hand, they plotted the true magnitude 
spectrum (shown in part (c) of the same figure) to see how 
closely their samples matched the true spectrum. 

Gold Stars: Part I1 

With understandable pride, the students brought me Eqs. 38 
and 39 and their plots the next day. I applauded their efforts 
and suggested we make a few minor adjustments. 

“Your Eq. 39 is used to compute samples of Yo. Suppose 
we wanted to compute samples of the more conventionally 
used ‘DTFT’ that we discussed yesterday. What would that 
look like?” 

They reviewed our discussion of the DTFT and realized 
that only a scale factor change was necessary. Since 
Y D T d f )  =fsY(f), we wrote 

The inverse relation also had to account for the scale factor. 

“You have also done the logical thing of sampling the FT 
(or now DTFT) over the ‘primary band’. That is, you took the 

appropriate samples on the frequency range - -. < f <  f s  -. The 
2 -  2 

problem with this is that the values of k (when written in 
general terms) depend on whether N is odd or even. When N 

2 1  t t 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Frequency sample, k (Actual frequency In H q  f = lo00 W16) 

1 
10. Magnitude spectrum of the 16-point DFT of the sequence x3(nTs) 
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N -  1 N- 1 never use the DFT to study the continuous spectrum?” 
“ N ~ ,  I guess you can always sample fast enough to 

“Yes, or more likely, you will filter out all energy above 
fs/2 and just resign yourself to studying the ‘lower’ frequen- 

“That different formulas for cies,” I added. “OK, so let’s assume that one period of the 
the frequency samples,” observed Tom. DTFT is a very good approximation to X3(f).” 

“Right. Unless we can find a way around the problem. ‘‘Then the DFT frequency samples will let us study the FT 
mat signal processing people usually do is exploit the fact of the continuous-time signal using just additions and multi- 

plications, no integrals!” said Tom. “And we can go back and 
that the numbers Ymm [z) e’2’krJ’N are periodic with period forth between the frequency and time samples with the rela- 

is odd, then the values are k = - -, ..., 0, . . . -; 2 but when 

N is even, k = - -, ..., 0, ..., - - 1.” 

2 
N N the aliasing insignificant,” said Mary. 
2 2 

we have to have 

6 
I .  

N. (Remember that the\DdFT has period f r ,  which corre- 
sponds to N samples.) Let’s show this: 

and 

What this means is that, in either case, instead of computing 

Y D T ~  - for negative values of k, we can compute over 

nonnegative k values only. In either case, N odd or even, the 
values of k used are k = 0, 1,2,  ..., N-1.” The students played 
with a few values of N to convince themselves that this was 
true. “Therefore, we can use Eq. 40 for these nonnegative k’s 
and modify Eq. 41 to read:” 

r:) 

“The pair of relations (Eq. 40, used fork = 0, 1 , 2  ,..., N-1; 
and Eq. U), are the essence of the discrete Fourier transform 
(DFT),” I elaborated. There is a group of efficient algorithms 
for computing the DFT relations that take advantage of the 
symmetry properties of the quantities involved. These algo- 
rithms are collectively known as the fast Fourier transform 
(FFT) (e.g, see [lo-131). We took a moment to compute the 
DFT of Eq. 40 and to plot the resulting magnitude spectrum 
(Fig. 10) and to verify that the inverse, Eq. 44, indeed pro- 
duced the 16 samples of X ~ ( ~ T . ~ )  shown in Fig. 6. The picture 
made clear that the DFT are samples of the first period of the 
DTFT on nonnegative frequencies, rather than the “primary 
period” that straddles f = 0. 

“Let’s review the significance of your DFT relations,” I 
encouraged them. “We will always have to work with a 
finite-duration signal on the computer, like x3(t), Dick began. 
“We then take N samples. The forward transform (m. 40) 
allows us to compute samples of the DTFT.” 

“What is the significance of those samples?” I asked. 
“Well, the DTFT will have to be an aliased version of the 
continuous-time FT, Xi(f),” Mary said. “ x l ( t )  cannot be ban- 
dlimited because it is time-limited.’’ 

“Right,” I agreed. “Do you suppose this means that we can 

tions we derived.” 
“Yes, and you did that all with FS theory, which is in the 

spirit of the original developments of the transform,” I re- 
minded them. “So when you see the DFT in your later work, 
you will know that it is not a ‘separate’ transform, but that it 
has real meaning for analyzing continuous-time signals, 
which, after all, is what we are usually trying to do.” 

“Let’s look at another important point which is inherent in 
your work,” I encouraged them. “Assume that there is negli- 
gible aliasing so that Fig. 9c on 0 If IfJ2  = 500Hz repre- 
sents the first half period of the DTFT except for a scale factor 
$,. Your samples on this range k = 0, 1, ..., 8 in either Fig. 9a 
or 10 compare favorably with the continuous spectrum. That 
is, they appear to be proper samples of the DTFT spectrum.” 

“But we don’t see much of the detail in the spectrum,” Tom 
pointed out. “Yes, that’s exactly what I wanted you to notice,” 
I said. “Is there a remedy for this problem? Remember how 
you sampled the FT at arbitrary frequencies in doing your 
homework plots (Eq. 17)? 

“I think the same basic idea applies here,” said Mary. “If 
we rewrite the D F I  relation (Eq. 40) as 

(45) 

k n = O  

it is obvious that the kth result is the sample of the DTFT at 
frequency f = k fslN. I guess we could compute these samples 
at whatever frequencies we want.” 

“That’s right,” I responded, “and a common thing to do is 
to compute these samples at the frequencies kf,/M for k = 0, 
1, ..., M-1 with M > N .  This gives us M equally (and more 
closely) spaced samples of the D T R .  M is frequently taken 
to be a power of two, since efficient and widely-available DFT 
(FFT) algorithms exist for this case. In this case, the DFT 
relation becomes 

The last equality follows because x3(nTs) is assumed to be 
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zero outside the initial N points. This is equivalent to taking 
the M-point DFT of the N-point signal x3(nTs) to which M - 
N zeros have been appended. You will get better resolution 
of the DTFT corresponding to the assumed N-length signal 
x3(nTs) using this process. If x3(nTs) is, in fact, longer than N 
points in duration, the only way to get both better resolution 
and a better DTFT to sample is to add more real data (not just 
appended zeros).” 

We proceeded to plot the 64-point DFT of x3(nTs) by 
appending 48 zeros to the original 16 points. The magnitude 
spectrum result is shown in Fig. 11. Better resolution of the 
continuous-time spectrum is evident in the result. 

“Does Eq. 44 still retum the correct signal x3(nT,) when M 
is used in place of N?” Dick wanted to know. “Good ques- 
tion,” I responded. “The answer is yes, and it is not difficult 
to demonstrate by putting Eq. 46 into Eq. 44. So, again, we 
have a complete DFT pair with the ability to sample the DTFT 
for a finite-duration signal as closely as desirable.” 

“Finally, there’s one more nuance that you need to be 
aware of,” I cautioned the students. “It is customary in digital 
signal processing to ‘normalize’ the problem so that the 
sampling frequency is effectively unity, fs = 1. Another way 
to look at this is that the time samples are indexed by integers, 
for example, x,(O), x I (  l), ..., xl(N) so that the sample period, 
T,, is effectively normalized to one. This reindexing has the 
accompanying effect of normalizing the frequency axis so 
that samples are taken in the interval 0 S f <  1. Please notice 
that this process is not equivalent to sampling the original 
signal at a rate& = 1. Rather it amounts to reindexing samples 
that have been taken at an appropriate rate. You will explore 
these details more formally in later work in digital signal 
processing. However, I wanted you to be aware of this fact 
because you will often see the DFT relations written simply 
as, for example, 

1 

N -  1 (47) 
~ 3 ( k )  = x3(n) e -j2nnklN , k = 0 , 1 , 2  ,..., N-1 

n=O 

0 

and 

T T T l T T T T T T T T ? T T T ? ? T ? ? ? T ? ? ? T ~ ~ T T T ~ T T T ? T T T T T l T T ~ l T ? l ,  

N -  1 (48) 
n=O, 1 ,  ..., N-1 1 

N 4 n )  = - C X3(k) CJ~’~ ’ ’ ”  

k = O  

where X3(k) stands for what we have called Y D T ~  - , or, 

since in this casefs = 1, Y D T ~  - . Please note again that 

this is not the same thing as simp y taking samples of the 
original time waveform at frequencyfs = 1. 

The students were pleased with their discovery, and men- 
tally and physically exhausted from their labors. They were 
packing up their books when I concluded the session. 

“I’m very proud of you for the hard work you did,” I told 
them, “and since you seemed to enjoy this challenge so much, 
...” But before I could finish the sentence, Tom, Dick, and 
Mary made a mad dash for the office door and were gone. 

(t] 
(F] 

No More Lies 

It is becoming increasingly likely that Tom, Dick, and Mary 
will spend an engineering career designing and analyzing 
spectra using only discrete techniques. The days of “pencil 
and paper” integral transforms as a basic design tools are 
receding into history. However, the students’ basic notions of 
spectra, frequency, phase, energy, resonance, and so on, are 
all based in continuous-time concepts, and the problems they 
will work on are inevitably drawn from the continuous world. 

t :  
3 

2 I~ 0 1 0 

T 

I .  Magnitude spectrum of the 64-point DFT of the sequence x3(nTs). 
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Henceforth, Tom, Dick, and Mary will benefit from the agony 
I put them through. They now understand the notion of 
sampling as one of constructing Fourier series for periodic 
extensions of the “signal” in the other domain. This will allow 
them to meaningfully interpret their results in light of their 
understanding of continuous-time concepts. They know the 
truth. 

J .  R .  Deller, Jr. is a professor in the Department of Elec- 
trical Engineering, Michigan State University, East Lansing, 
MI. 
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Editor’s Note 

This article has been formally reviewed by four referees 
according to customary IEEE procedures. 
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