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Time-frequency signal representations characterize
signals over a time-frequency plane. They thus combine
time-domain and frequency-domain analyses to yield a
potentially more revealing picture of the temporal
localization of a signal's spectral components. They may
also serve as a basis for signal synthesis, coding, and
processing.

This paper is a tutorial reviewing both linear and
quadratic representations. The linear representations
discussed are the short-time Fourier transform and the
wavelet transform. The section on quadratic repre-
sentations concentrates on the Wigner distribution, the
ambiguity function, smoothed versions of the Wigner
distribution, and various classes of quadratic time-fre-
quency representations.

map a one-dimensional signal of time, x{t), into

a two-dimensional function of time and frequen-

cy, Tu{t.f). Most TFRs are “time-varying spectral repre-
sentations” which are similar conceptually to a musical
score with time running along one axis and frequency
along the other axis. The values of the TFR surface
above the time-frequency plane give an indication as to
which spectral components are present at which times.
TFRs have been applied to analyze, modify, and
synthesize non-stationary or time-varying signals.
Three-dimensional plots of TFR surfaces have been
used as pictorial representations enabling a signal
processor to analyze how spectral components of a
signal or system vary with time. TFR inversion or syn-
thesis algorithms have been employed to recover a
signal from a TFR model, thus allowing a time-frequen-

Timefrequency representations (TFRs) of signals

cy implementation of signal design, time-varying filter-
ing, noise suppression, time warping, etc. TFRs have
also been used for efficient coding of signals (e.g.,
subband coding) and as a statistic for signal detection
and parameter estimation.

This paper will review several linear and quadratic
(bilinear) TFRs, discuss their motivation and proper-
ties, and provide examples of their application to
typical problems encountered in time-varying signal
processing. Other tutorial papers on TFRs are avail-
able in [Cla80c, CohL89, Naw88, Rab78, Boa90a.
Gab46, Mec87, Boud83, Hla91d, Bast83, FlaP87¢,89,
Hla92a].

This tutorial is organized into four sections. The first
section reviews the time domain and the frequency
domain as defined by the Fourier transform. The limita-
tions inherent in separate time-domain and frequency-
domain descriptions, including the concepts of
instantaneous frequency and group delay, provide a
motivation for a joint time-frequency description of sig-
nals by means of TFRs.

The next section discusses linear TFRs, concentrating
on the short-time Fourier transform (STFT) and the time-
frequency version of the wavelet transform (WT). The STFT
is considered in some detail, with emphasis placed on
basic properties, running-window and filter interpreta-
tions, time resolution versus frequency resolution, STFT-
based signal synthesis and processing, and the discrete
STFT version with its relation to filterbank methods and
the Gabor expansion. Our treatment of the WT is less
detailed (since a tutorial review of the WT has appeared
in a companion paper [Rio91]) and focuses on the WT's
similarities to, and differences from, the STFT.
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The third section considers quadratic (bilinear) TFRs.
We review two motivations for quadratic TFRs, based
on energy densities and correlation functions, and com-
ment on the occurrence of quadratic cross terms. The
Wigner distribution and the ambiguity function are
presented as two important examples of the “energetic”
and “correlative” interpretations, respectively. We next
consider two fundamental classes of energetic TFRs,
namely, the classical Cohen class of shift-invariant TFRs
and the recently introduced affine class. Motivated by the
practical necessity of attenuating quadratic cross terms
by means of smoothing, we discuss smoothed versions of
the Wigner distribution in each class.

The fourth and final section presents computer
simulation results with the aim of comparing various
quadratic TFRs and illustrating some of their applica-
tions.

TIME DOMAIN AND
FREQUENCY DOMAIN

The Fourier transform (FT) and its inverse establish
a one-to-one relation between the time domain (signal
x(f)) and the frequency domain (spectrum X{f)) as
depicted in Fig. 1 [Papo77].

x() Xif)

Time domain (signal) Frequency domain (spectrum} |

x(t=[x e df Xfy=fxt)e? at
f t

Fig. 1. Time domain and frequency domain: a dualistic ap-
proach to signal analysis. The Fourier transform () con-
nects the two domains.

Time domain and frequency domain constitute two
alternative ways of looking at a signal. Although the FT
allows a passage from one domain to the other, it does
not allow a combination of the two domains. In par-
ticular, most time information is not easily accessible
in the frequency domain. While the spectrum X(f) shows
the overall strength with which any frequency f is
contained in the signal x(f), it does not generally provide
easy-to-interpret information about the time localization
of spectral components. (Strictly speaking, this infor-
mation is contained in the phase spectrum arg {X(f )}
but often comes in a form that is not easily interpreted,
as is discussed in the next section.)
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LIST OF ACRONYMS
AF ambiguity function
AS ambiguity surface
AM amplitude modulation
AUD “active” Unterberger distribution
BED Bertrand distribution
BJD Born-Jordan distribution
BUD Butterworth distribution
CKD cone-kernel distribution
CND Cohen's nonnegative distribution
CWD Choi-Williams distribution
(= exponential distribution)
FD Flandrin-D distribution
FM frequency modulation

FT Fourier transform

GD group delay

GED generalized exponential distribu-
tion

GWD generalized Wigner distribution

IF instantaneous frequency

IT interference term

LD Levin distribution

PD Page distribution

PUD “passive” Unterberger distribution

PWD pseudo Wigner distribution

RD Rihaczek distribution

RGD radially-Gaussian kerne! distribu-
tion

RGWD real-valued generalized Wigner
distribution

RID reduced interference distribution

SCAL scalogram

SPEC spectrogram

SPWD smoothed pseudo Wigner distribu-
tion

STFT short-time Fourier transform

TFR time-frequency represemation

WD Wigner distribution

WT wavelet transform

Instantaneous Frequency
and Group Delay

Clearly, there exist signals which feature a time
localization of spectral components. A simple example
is the complex-valued frequency-shift-keyed signal
shown in Fig. 2. Here, it seems that at any time instant
only a single frequency is present; this frequency may
be obtained as the derivative of the instantaneous
phase, arg{x(f)}. This concept generalizes to the defini-
tion of the instantaneous frequency (IF ) [Papo77, Vil48]

f4b 2 % %arg Xty (1.1)

as the derivative of the instantaneous phase, argi{x{f)},
of the complex-valued signal x{f). (In the case of real-
valued signals, the signal x(f) has to be replaced by its
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Fig. 2. Schematic time-frequency description of a frequency-
shift-keyed signal. In each time interval [t. tk+1]. only a single
Jrequency fk is present.

analytic version in (1.1)). A dual quantity is the group
delay (GD)

1 d
tLf) é—ﬂzfarg X(f) (1.2)

where arg{X(f )| is the phase spectrum. The GD is
especially meaningful when x{(t) is the impulse response
of a linear time-invariant system. Under certain condi-
tions, &{f) can then be interpreted as the “time delay
introduced by the system at frequency f° [Papo77,
Prei82].

Unfortunately, the IF and GD are only capable of
adequately describing the time localization of spectral
components for a very restricted class of signals. The IF
represents the frequency as an explicit function of time,
f=/{1. and thus implicitly assumes that, at each time
instant t, there exists only a single frequency com-
ponent. A simple signal which evidently does not comply
with this assumption is the signal x(f) = &?¥i%e2W!
containing two frequency components (f; and fy) at all
times. A dual restriction applies to the GD; here, the
implicit assumption is that a given frequency is con-
centrated around a single time instant.

Time-Frequency Representations

The restrictions associated with the IF and GD can
be removed by describing the time-frequency structure
of a signal not by a one-dimensional curve in the
time-frequency plane (as in the case of the IF or GD).
but by a surface over the time-frequency plane (see Fig.
3). Mathematically, this corresponds to a joint function
T{tf) of time t and frequency f. We shall call T (t,f) a
“time-frequency representation” (TFR) of the signal x{t).
Note that the TFR concept resembles a musical score,
which indicates which notes (spectral components) are
present at which time in a piece of music.

The definitions of all TFRs considered in this paper
are summarized in Table I for subsequent reference.
Looking at this table, we see that a fundamental proper-
ty of each TFR, T{tf). corresponds to the manner in
which it depends upon the signal x{#). This dependence
may be linear, quadratic, or otherwise nonlinear, with
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Fig. 3. A time-frequency representation Tx{t.f) displays signals
as surfaces over the time-frequency plane. This yields a poten-
tially clear representation of the temporal localization of
spectral components even in those cases where one-dimen-
sional representations (curves). such as the instantaneous fre-
quency fx(t). are no longer meaningful.

the first two cases being by far the most widely used.
Therefore, we shall concentrate on linear and quadratic
TFRs in the following.

LINEAR TIME-FREQUENCY
REPRESENTATIONS

All linear TFRs satisfy the superposition or linearity
principle which states that if x(f) is a linear combination
of some signal components, then the TFR of x{t) is the
same linear combination of the TFRs of each of the
signal components:

M) = () + xat) = TUtS) = ¢ Ty (L) + e Ty ()

Linearity is a desirable property in any application
involving multicomponent signals (e.g., speech). Two
linear TFRs of basic importance are the short-time
Fourier transform and the wavelet transform; these are
discussed in the next two subsections.

The Short-Time Fourier Transform

Definition and Expressions

Although the FT (spectrum) does not explicitly show
the time localization of frequency components, such a
time localization can be obtained by suitably pre-win-
dowing the signal x{f) as shown in Fig. 4. Accordingly,
the short-time Fourier transform (STFT) [Naw88, Rab78,
All77a,c.d, Port80, Cro83), or short-time spectrum, of a
signal x(f) is defined as

STFT(t.f) :f [x(t) Y (t=t) Je 72 ae (2.1)
e
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TABLE I.
SOME TFRs IN ALPHABETICAL ORDER. The superscript * denotes complex conjugation.

Linear TFRs
Gabor expansion coefficient function G, (n,k): implicitly defined by

x(t)= Z z G, (n,k) g (t—nT) ) 2rU )t
n k
Short-time Fourier transform (STFT):

STFT E(Y) tf) =Jt,x(t,) Vit -t eI 2 gpr e"jz"tf_[f’X(f’)r*(f’ - ed2nts’ df’

Wavelet transform (WT):

WT@(tJ):J.t,x(t’)V | {7l [i(t’—t) Jdt’:ff/X(f’) NI fo/f1 1 [?f’]e”’”f' df’

Jo
Quadratic TFRs
“Active” Unterberger distribution (AUD):

AUDX(tJ)sz‘:X(fu)X*[I](l oy e w1 gy
u

u
Ambiguity function (AF):
_ T T g v LV ey
Ax(t.v)—_[tx(t+2)x(t 5)e dc_ij(f+2)X*(f o) el ar

Bertrand distribution (BED):

B w2, o 3 —u/2 j 2ntfu __u/2
BED(tf) =] X () e X0 ) e h ) M au. )= gt
Born-Jordan distribution (BJD):

L It/ <1/2

BJD, (tf) = | [f LO(t= ') x (" + ) x (- 7) dt’] eI ar, gtry=1 "
Tt 0, It/tl>1/2
Butterworth distribution (BUD):

BUD(Lf) = j{fv ¥ (1v) A (Lv) € 2V I D gray, W) = !

To Vo
Choi-Williams (exponential) distribution (CWD):

2
CWD, (tf) = L J ¥ v A eV drav. W) - exp [— @anmy }

Cone-kernel distribution (CKD):

’ ’ ® oy —j 21, | I <1/2
CKDx(t‘f)z‘[iJ.tl(p(t—t,t)x(t o) —%)dt’}elzﬁdt, (p(t,r)z{gft) |z:|§1§2

Flandrin D-distribution (FD):
FD, (tf) = f | X[f(l + 2 }X* [f(l - H 1- (3)2} e/ du
u 4 4 4
Generalized exponential distribution (GED):
GED, (tf) =] | ¥ tv)Actv) e /D drdy, W (tv)=exp [ - (ti)ZM (VL)ZN}
TV 0 0
Generalized Wigner distribution (GWD):
GwD® (tf) = | x( t+(%+0c)‘t) X (t—(%—a) t) 72 g
T

Levin distribution (LD):

2
LD, (tf) = -d% ["xty e ar’| =2Re { Xty el T sty eI ar }
t t
Page distribution (PD):
2
t , . . oy
PDx(tJ)=d£t | sty e arr :2Re{x (t) elmff Xt ) el 2Vt dt’}

2
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’7 TABLE 1. (continued)

“Passive” Unterberger distribution (PUD):
PUD, (t.f) :fE X(fw X’k(l ) 111 ej 2nt fu—1/uw du

u

Pseudo Wigner distribution (PWD):
PWDLY ()= | x4 )x " (e n’ = 5 ed T ar- ng-rwoarar
with H() = | n)n'c 5) e/ dr
T

Real-valued generalized Wigner distribution (RGWD):
RGWDY (t,f) = Re {GWD (1) |
Reduced interference distribution (RID]I:
RID, (t.f) = | | Stv) Ay (1v) €/ 2% T9) o gy,
T Vv

a

with s () =0 for lal >1/2, SB)e R, S(0)=1, B

S (B)’ =0
p=0
Rihaczek distribution (RD):

RD (tf) :J.Tx(t+‘c) X () e ™ ar=x"(t) X (f) ) 2"

JoxanN

2
AL a
: Y(f[)( )

Smoothed pseudo Wigner distribution (SPWD):

Scalogram (SCAL):

SCALY (t.f) = IWTY ()12 =

sowni® " )= [ [ gu- v D -DrarInd e Der s a-
T

Jl,ff, gt—tVH(-f) Wy (tf) dt’ df* with H(f)= Jf”‘%) N el ar
Spectrogram (SPEC):

SPECY (t.f) = ISTFTY (tf)12% = ‘J‘t,x(t’) Yt -ty el dt’{z

Wigner distribution (WD):

W, (L) :Lxm%)x‘“ (t-5) e’ ar :jvxg+ SIX - e a

Nonlinear, nonquadratic TFRs
Signal-adaptive radially-Gaussian kernel distribution (RGD)?:
RGD, (1) = | | Wo(tv) Ay (zv) /2% /%) ey,
TV
2 2
/10" + (V/V, v/v
(t/7%0)” + (v/vp) © < arctan /Vo

with W, (t,v) =exp |- ,
* 262 (©) /1

Cohen’'s nonnegative distribution (CND):

CNDE® (1,f) = "“7“';'(&”—'2[ Leep (&) )]

l :
with&x(t):Eij Ix(t) 1% dt”, nx(f):};ff L XU df, Exz.[tlx(t)\gdt
x " =0 X~ —oo

lSpeciﬁC members of the RID class are discussed in [Jeo92a]
2An algorithm for the signal-adaptive optimization of 64©) is described in [Bara91]
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Fig. 4. Interpretation of the STFT as a local spectrum. At time
t, the STFT is the Fourier transform of the signal x(t’) multi-
plied by a running analysis window y*(t’-t). Since the window
suppresses all signal features outside a local neighborhood
around time t, the STFT is simply a “local spectrum.”

The STFT at time t is the FT of the signal x(¢) multiplied
by a shifted “analysis window” y'(f~t) centered around
t. (All integrals go from — to . The superscript *
denotes complex conjugation.) Because multiplication
by the relatively short window y"(f-t) effectively sup-
presses the signal outside a neighborhood around the
analysis time point ¢ = t, the STFT is simply a “local
spectrum” of the signal x(t') around the “analysis time”
t.

The STFT is evidently a linear TFR, and it is complex-
valued in general. Note that the STFT result

S’I‘F’I‘ECY)(t,Jr ) for a given signal x(t) is significantly in-

fluenced by the choice of the analysis window y'(t).
Other elementary properties describe how the STFT is
affected by basic signal transforms. In particular, the
STFT preserves frequency shifts in the signal x(t'), and
it preserves time shifts up to a modulation (phase
factor):

st) = xt)e! 2 = sTFT Pief) = STFT Vieofy

%) = xt - to) = STFT Pt = STFT Vit - to,fre 72

The STFT may also be expressed in terms of the
signal and window spectra

STET (1) = &2 [ Xy (= pre? Y
i

Apart from the phase factor e this “frequency-
domain expression” is analogous to the time-domain
expression (2.1). In fact, it shows that the STFT can also
be interpreted as the inverse FT of the “windowed
spectrum” X(f)I™*(f~f), in which the spectral window
I'(f) is simply the FT of the temporal window Y(1).

Filter Interpretation

The inverse FT of the windowed spectrum
X(f")T*(f=f ) can be interpreted as the result of passing
the signal x(t') through a filter with frequency response
I'"(f’~f) [Naw88, Rab78, Cro83, Port80]. This filter is a
bandpass filter centered around the analysis frequency
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f. since I'(f’) is the FT of a lowpass window function.
The resulting implementation of the STFT is illustrated
in Fig. 5a. At a given analysis frequency f, the STFT is
derived by passing the signal x(t) through an “analysis
bandpass filter” with center frequency f and then fre-
quency-shifting the filter’s output to frequency 0. Due
to the final frequency shift, STF'I'Q)(tj ) (as a function
of {) is a lowpass signal for any fixed f. Note that the
impulse response of the bandpass filter is essentially a
modulated version of the lowpass window y'(t). The
filter’s bandwidth is equal to that of the window, inde-
pendent of the analysis (center) frequency f.

A “lowpass implementation” of the STFT, which is
equivalent to the “bandpass implementation” discussed
above, is shown in Fig. 5b. The lowpass filter’s impulse
response is equal to the time-reversed analysis window

Y1)
Time-Frequency Resolution

Because the STFT at time t is the spectrum of the

signal x(t) prewindowed by the window y'(¢-t), all signal
features located within the local window interval

e’ 2 mft
. j2 mft
() ——=p v (0 éé_’STFT R
Bandpass
filter (@)
o 2mit
x(1) 1 e —=stEr P
Lowpass
filter
(b)

Fig. 5. (a) Bandpass implementation of the STFT. At any
analysis frequency f, the STFT can be derived by passing the
signal through a bandpass filter with center frequency f, and
subsequently demodulating (frequency-shifting) the filter’s out-
put to frequency 0. The impulse response of the bandpass fil-
ter is 7‘(—t)e‘2"ﬂ, where y*(t) is the STFT analysis window. Note
that the filter's bandwidth is independent of the analysis (cen-
ter) frequency f and equals the bandwidth of the analysis win-
dow y*(t).

(b) Lowpass implementation of the STFT. The STFT at any
analysis frequency f can be derived by first frequency-shifting
the signal x(t) by -f and then passing the frequency-shifted sig-
nal through a lowpass filter. The lowpass filter’s impulse
response is Y*(-t), i.e., the time-reversed analysis window y*(t).
Again, the filter bandwidth equals that of the window, inde-
pendently of the analysis frequency f.
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around time ¢ show up at time t in the STFT. Thus, it is
clear that good time resolution of the STFT requires a

short window y*(t' ). On the other hand, the STFT at the
frequency f is essentially the result of passing the

signal x() through the bandpass filter I''(f’-f). Good
frequency resolution of the STFT hence requires a
narrowband filter, i.e., a narrowband (and thus long)
analysis window y'(t).

Unfortunately, the uncertainty principle prohibits
the existence of windows with arbitrarily small duration
and arbitrarily small bandwidth [Papo77]. Hence, the
joint time-frequency resolution of the STFT is inherent-
ly limited. Specifically, there exists a fundamental
resolution tradeoff. improving the time resolution (by
using a short window) results in a loss of frequency
resolution, and vice versa.

It is instructive to consider two extreme choices of
the analysis window/filter y(t). The first case is that of
perfect time resolution, that is, if the analysis window
Y¥(t) is an infinitely narrow Dirac impulse,

Yt)=8t) = smg)(tj) = x(t)e I

In this case, the STFT essentially reduces to the signal
x(t), preserving all time variations of the signal but not
providing any frequency resolution. The second case is
that of perfect frequency resolution obtained with the
all-constant window y(t)=1,

r =) = ST Vi) = x(1)

Here, the STFT reduces to the FT and does not provide
any time resolution.

Time-Frequency Signal
Expansion and STFT Synthesis

STFT analysis can be motivated using an alternative
approach [Hel66, Mon67]. Consider the representation
of a signal x{f) as a superposition (weighted linear
combination) of time-frequency-shifted versions of an
elementary signal g(t),

xt) =] [ 1ae g - 0 &2 Garar
t’f’

(2.2)

This may also be viewed as an expansion of the signal
x{t) into the “basis signals” gr f(t) = g(t—t’)eﬂ"f " con-
tinuously indexed by t',f”. If g(f) is centered around t=0
in the time domain and around f=0 in the frequency
domain, then g(t-t)e”?¥ " will be centered around the
time-frequency point (¢,f”). Hence, the coefficient func-
tion Tt f") of the above “time-frequency expansion”
will tell us how strongly a neighborhood around the
time-frequency point (¢ . f”) contributes to the signal x(1).

It is easily shown that expansion (2.2) exists for any
finite-energy signal x{f). Furthermore, the coefficient
function Tytf) may be chosen as the STFT,

APRIL1992

Tyt = STET Pt f) = [xew - e a2.3)
)

provided the STFT analysis window y'(t) is selected to
satisfy .[g( b)Y (bdt = 1. This is not a very restrictive con-
dition, and the freedom left in choosing the analysis

window y'() shows that the expansion's coefficient
function Tx(tf) is not uniquely defined.
Inserting (2.3) into (2.2) yields the relation

xt)= ” Smg)(t S gt=tHed Mt arr (2.4
tf’

which indicates how to recover or “synthesize” the
signal x{f) from its STFT [Hel66, Mon67, Port80]. We can
in fact view STFT synthesis as defined by (2.4) as being
the inverse operation of STFT analysis (2.3).

Given the analysis window y'(f), there are infinitely
many “synthesis windows” g(t) that satisfy the condition

fg(t)y*(t)dt =1 and can thus be used in (2.4). A natural

choice equates the analysis window and the synthesis
window, g(t) = y(t), with appropriate normalization. Two
other choices, g(t) = 8(t) and g(t)=1, are noteworthy since
they result in a simplification of the general synthesis
relation (2.4) [Port80].

STFT-Based Signal Processing

The inclusion of an STFT modification between STFT
analysis and STFT synthesis, as shown in Fig. 6a, is an
obvious way of implementing time-varying signal
processing in a joint time-frequency domain [Cro83,
Rab78]. It must be stressed that the overall signal
processing system depends not only on the STFT
modification performed, but also on the analysis win-
dow ¥'(t) and synthesis window g(f). The overall system
will be linear (but generally time-varying) if the STFT
modification itself is linear as, for example, in the case
of STFT-based time-varying filtering where the STFT
modification is simply a multiplication of the STFT by
some signal-independent time-frequency weighting
function.

Using a discrete-time/discrete-frequency version of
the STFT as considered in the next subsection, the
STFT-based time-frequency signal processing scheme
discussed above has been applied successfully to a
number of problems (cf. the later section entitled “Ap-
plications of the STFT").

Discrete STFT Version and Filterbanks

For practical applications of the STFT, it is necessary
to discretize the time-frequency plane. We therefore
consider samples of the STFT at equidistant time-fre-
quency grid points (nT.kF') where T> 0 and F > O are
the sampling periods for the time and frequency vari-
ables, respectively, and n and k are integers,

IEEE SP MAGAZINE 7
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Fig. 6. (a) Time-frequency signal processing based on STFT modification. The properties of the overall system depend on the
STFT modification M and on the windows v*(t) and g(t) used for STFT analysis and synthesis, respectively.

(b) Filter bank implementation of (discrete) STFT analysis/modification/synthesis. All signals are assumed to be discrete-time.
The boxes labeled “\R” and “IS” denote sampling-rate down-conversion and up-conversion by the factors R and S, respectively.
These factors may be different as part of the overall signal processing scheme. The symbol M again denotes some modification
to the STFT samples. The analysis filter y*(-n) and the synthesis filter g(n) can be interpreted as a decimation filter and an inter-

polation filter, respectively.

STFT;Y)(nT‘kF) = .[ Xty (t’ - nDe J 2n(kt’ g1 0
i
(2.5)

The discretized version of the STFT synthesis relation
(2.4) is [All77¢, Port80]

x=Y, ¥ STET P k) ge-nne ™ 2.6)
n k

This relation is valid provided that the sampling periods

T and F, the analysis window y'(f), and the synthesis
window g(t) are chosen such that

%2 g(t+k%—nT)y*(t—nT):8lk] for all t
n
(2.7)

with 8[k] defined as 8[0] = 1 and [k} = O for k#0. This
condition is far more restrictive than the condition
Ig(t)y*(t)dt =1 required in the continuous case [Cro83,
Port80].

Both the discrete STFT analysis (2.5) and the discrete
STFT synthesis (2.6) can be implemented efficiently by
means of overlap FFT techniques [Cro83, All77a.d].
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Alternatively, an implementation using filterbanks is
possible. In accordance with Fig. 5b, an “analysis filter-
bank” can be used to calculate the discretized STFT,

STF Ix(Y )(nT‘kF): for each analysis frequency fi. = kF, a

filter is needed. A “synthesis filter bank” (followed by a
summation of all filter outputs) can then be used to
recover the signal x(f) from the STFT samples

m‘F’I(;{)(nT,kF) in accordance with the synthesis rela-

tion (2.6). The impulse response of the analysis filter
equals the time-reversed analysis window Y'(-0; the
impulse response of the synthesis filter equals the
synthesis window g(f). The construction of y(t) and g(1)
such that the “perfect-reconstruction condition” (2.7)
is met (or, at least, reasonably well approximated)
now becomes a rather nontrivial filter design problem
[Cro83, Nay92, Vet86, Vai87,92, SwaK86, Dem87]. A
fully discrete-time implementation of the filter bank
scheme (including a modification of the discrete
STFT) is shown in Fig. 6b. Because the same lowpass
filter is used for each channel, the filter bandwidth is
the same for each center frequency f = kF.

Gabor Expansion
The synthesis relation (2.6) can again be interpreted

as an expansion of the signal x(f) into time-frequency
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shifted versions g, {f) of an elementary function g(y),

Xt) =, D Gln kgt

n k
with GniD) = g(t=nT) e) 2n(kMt

(2.8)

This discrete time-frequency signal expansion is known
as the Gabor expansion [Gab46, Bast80a, Hel66,
Mon67, Nel72, JanA81, Wex90]. The expansion coeffi-
cients Gd{n.k) are called Gabor coefficients, and the
functions gni{f) are called Gabor logons. The logons were
originally taken to be time-frequency-shifted Gaussian
functions by Gabor because Gaussian signals are max-
imally concentrated in time and frequency. Although
the Gabor coefficients Gx{n,k) may be chosen to be the

STFT samples STFT()Z)(nT,kD (see Eq. (2.6)), these coef-

ficients are not, in general, uniquely defined for a given
signal.

The interest in the Gabor expansion stems from the
fact that the basis signals g,,{0) can be constructed
such that they are well localized and well concentrated
with respect to both time and frequency [Gab46]. There-
fore, the expansion coefficient G,{n,k) may be expected
to indicate the signal’s time-frequency content around
the time-frequency location (nT,ikkF ). Moreover, the
logon basis signals g,;[f) can easily be generated since
they are all derived from the elementary function g(f)
through simple time-frequency shifts.

In the context of the Gabor expansion, important
issues are the completeness, linear independence, and
orthogonality of the “Gabor basis” (g0} [Bast81a,
JanA81, Dau90a,91al. In particular, completeness of the
Gabor basis guarantees that any finite-energy signal
can be represented by the linear combination of the
Gabor basis functions given in the Gabor expansion
(2.8). A necessary condition for completeness of the
Gabor basis is TF < 1; this condition is a bound on the
density of the “time-frequency sampling grid”
employed. In the extreme case of “critical sampling,” TF
= 1, the number of Gabor coefficients equals the num-
ber of signal samples (assuming a bandlimited signal
sampled with minimum sampling rate); hence, the
Gabor coefficients G,(n,k) do not contain redundancy.
Some degree of oversampling (TF < 1), which introduces
redundancy in the coefficients, is usually recom-
mended for the sake of numerical stability, even though
the Gabor basis signals are then not linearly inde-
pendent (i.e., the Gabor coefficients G,(n,k) are not
uniquely defined). Finally, it has been shown [Dau90a,
Bat88] that a Gabor basis with good time-frequency
localization may not be orthogonal (see [Dau91a] for an
interesting modification of the Gabor expansion resulting
in an orthonormal basis).

If completeness of the Gabor basis g,,;{t) is assumed,
then the biorthogonality condition [Bast80a, Aus91a]

J Grad D) Ve e (Dt = SIn—n'] 8[k—ic]
t

(2.9a)

or, equivalently,
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smg)(nr.km = Jg(t') Yt - nT) ed 2™ gs

t

= d[nld[k]
(2.9b)

is sufficient for the perfect-reconstruction condition
(2.7). The construction of a “biorthogonal” analysis
window ¥'(t) satisfying (2.9b) can be done using the
Zak transform [JanA81.88, Aus9la, Orr91]. More
generally, the construction of an admissible analysis
window Y () may be based on the theory of frames
[Dau90a].

Applications of the Gabor expansion are discussed
in [Davi79, Gla63, Aus90, Fri89, Bast80b, PorM&8,89,
Zee89, Ein86, PorB31, Nel72, Bil76, Bro90, Boud9la,
Pro90].

Applications of the STFT

The STFT (or. in some cases, the STFT's squared
magnitude known as the spectrogram, see the Section
on quadratic TFRs} has been applied to signal process-
ing problems in many different areas. Major applica-
tions include time-varying signal analysis [Cro83,
All77c, Str87], system identification and spectral es-
timation [All79, Rab80, Dur85], signal detection and
parameter estimation [Wolc83, Alt80, Aus90, Fin9l,
Mos86], mode separation and determination of group
velocity [Blo68, Dzi69, Levs72, Tri78], speech pitch and
formant analysis [All82, Port8la-b, Rab78, Yeg8l,
FlaJ72, Pot66, McA9O], speaker identification [Bolt69],
speech coding [Port76, McA92], estimation of the group
delay or the instantaneous frequency of a signal
[Kod78, You85], and complex demodulation [Cal76,
Web79, Ban73]. Some applications of STFT synthesis
techniques [All77a,c, Naw83, Port80, Gri84] are time-
varying filtering [Dau88, Bour88, Cro83, Rab78], non-
linear noise removal [Lim79], correction of helox speech
[Ric82], room dereverberation [FlaJ70, All77b], time-
scale modification or warping of speech signals
[Port8la, Gri84], and dynamic range and bandwidth
compression of acoustical signals [Cro83, Lim79].

The Wavelet Transform

In addition to the STFT discussed so far, another
important linear TFR is the time-frequency version of
the wavelet transform (WT) defined as

WL f) = '[)dl’)\llf/jbl yx[}[(t’ft)Jdt’ (2.10)
7 (¢]

where y(f) (the “analyzing wavelet”) is a real or a complex
bandpass function centered around t=0 in the time
domain. The parameter fo used in (2.10) equals the
center frequency of y(f). We note that the WT was
originally introduced as a time-scale representation
[Dau90a.91b, Kro87, Rio91, Mall89a-b, Coig1, Mey89];
this classical formulation of the WT can be re-obtained
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Fig. 7. (a) Effect of the time-shift/ frequency-shift operator S0, The STFT, STFT E;{)( t.f), is the inner product of the signal x(t'’} and

a time-shifted/ frequency-shifted version, (S s () = y(t-t )eﬂ"f v, of the lowpass-type analysis window y(t). The time-
shift/ frequency-shift operator s causes the analysis window y(t) to be centered around time t and frequency f. It does not af-
fect the bandwidth or the duration of the window.

(b) Effect of the time-scaling/time-shift operator ¢, The WT, wT g)(t, ), is the inner product of the signal x(t') and a time-

scaled/time-shifted version, (C @ W) = NIf/ ol v JJ: (t’—t) |, of the bandpass-type analysis wavelet y(t). The time-scal-

0
ing/time-shift operator ¢ causes the analysis wavelet y(t) to’be centered around time t and frequency f. Furthermore, the time
scaling also affects the wavelet’s bandwidth and duration: the bandwidth (duration) is proportional (inversely proportional) to f.

from the above time- frequency formulation by introduc-
ing the analysis scale a as a=fo / f [Ri092, Gram91].
For the time-frequency version (2.10), we have to as-
sume that the FT of y() is essentially concentrated
around the center frequency fo. A tutorial discussion of
the WT's time-scale version may be found in the October It does not, however, preserve frequency shifts.
1991 issue of this magazine [Rio91]. There exists a strong formal similarity between the
The WT preserves time shifts and time scalings: STFT and the WT. Indeed, both the STFT and the WT
can be written as inner products:

%0 = xt-ty) = WrPes) = wr - to)
xty=VNlal xat)= WT;{Y)(L’J) = WTECY)(at’ f)

a
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(a)

(b)

i
Fig. 8. Schematic sketch of (a) the STFT and (b) the WT of the signal

X = (t-t1) + 8(t-t o) + €2V 1 PVt LT X(fy = o PR L o PR L S0 £y 4 S fo)

The two time-domain Dirac impulses give rise to the vertical support regions around t| and to whereas the two complex
sinusoids (frequency-domain Dirac impulses) produce the horizontal support regions around N1 and f2. It is seen that the time-fre-
quency concentration of the STFT is independent of the analysis _frequency f. In contrast, the time concentration (frequency con-

centration) of the WT becomes better (poorer) as | fl increases.

S’I‘F’I‘g)(t,f) = xSy with
e
wr Pief) = ey with

€ "Dy = Nigy, y[}%a'—o]

the inner defined as

xy) = Jx(t)y*( tydt. 1t is seen that there are two essential

differences between the STFT and the WT. The first
difference is the choice of the linear time-shift/frequen-
cy-shift operator st/ or the linear time-scaling/time-
shift operator C“J) The second difference is the fact
that y(?) is a lowpass signal in the STFT case and a
bandpass signal in the WT case.

Figure 7 illustrates the practical consequences of
these formal differences by comparing the effects of the
linear operators s ) and & /). The STFT operator
S %) first time-shifts Y(t) by time t and then frequen-
cy-shifts the result by frequency f. The WT operator
¢“), on the other hand, first time-scales Y(t') by a factor
[/fo and then time-shifts the result by time t. Thus, the
frequency shift in the STFT case is replaced by a time
scaling in the WT. (Note that a time scaling by a factor
ainduces a frequency scaling by the inverse factor 1/a.)
Both (S““’r )y)(t’ ) and (de )y)(t’ ) are centered around the
time-frequency point (t,f). However, whereas the effec-
tive duration and bandwidth of the STFT test signal
(S t‘f)y)(t' ) are independent of the analysis frequency f,
the effective duration of the WT test signal (C“‘f Wty is
inversely proportional to fand the bandwidth is propor-
tional to f.

where product is

APRIL1992

Like the STFT, the WT can be interpreted (for each
analysis frequency f) as the result of filtering the signal
x(t') with a bandpass filter with center frequency f. In
the STFT case, the bandpass filter's bandwidth is inde-
pendent of the analysis or center frequency f. In con-
trast, the bandwidth of the WT bandpass filter is
proportional to f or, equivalently, the filter's quality
factor @ ( = center frequency/bandwidth) is inde-
pendent of f In fact, the WT can be viewed as a
“constant-Q” analysis [Ri090,91].

In principle, the WT suffers from the same time-fre-
quency resolution limitations as the STFT, i.e., time
resolution and frequency resolution of the WT cannot
be made arbitrarily good simultaneously. However, the
WT is different from the STFT in the following respect:
while the STFT's time-frequency resolution is the same
for each analysis frequency f, the WT analyzes higher
frequencies with better time resolution but poorer fre-
quency resolution. Figure 8 compares the resolution
characteristics of the STFT and the WT using a simple
signal.

Using a synthesis formula which is analogous to the
STFT formulae (2.4) or (2.6), a signal may be
reconstructed from its WT [Dau90a, Mall89a,c]. WT
analysis and synthesis may be used as a basis for signal
and image coding [Mala91, Ant91, Mall89¢c, Wic89,
Bur89, Zet90, Baa90, Uz91, Zhan91], acoustic and
seismic signal processing {Gou84, Kro87, Com89,
Lar89, Wic89, Yan92, Gin89, Dut88, Morl82], speech
analysis [Kad92a, Dave9l, Lien87], stochastic signal
processing and fractal analysis [Bass89, Chou9l,
Arn88, Arg89, Gac91, FlaP91a,92a, Wor92a-b, Tew92],
system analysis [Arn89}, and detection [Fow91, Fri9l,
Gro87].
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TABLE II.
SOME “DESIRABLE” MATHEMATICAL PROPERTIES OF ENERGETIC, QUADRATIC TFRs

P1 - Real-valued: Ty (t.f) = Tx (t.f)
P2 - Time shift: Tx (tf) = Tx (t - to.f) for X (t) = x (t - to)
P3 - Frequency shift: Tx (t.f) = T (t.f - fo ) for % (t) = x (¢ ) ed 2ot

P4 - Time marginal: Jfo (tf) df= Ix(t)l2
Ps - Frequency marginal: _[ Tx (tf) dt= 1 X ()12
t
Ps - Time moments: .[ -[ftn Tx (tf) dtdf:_[ a1 de
t t

P7 - Frequency moments: J. _[ff " Ty (tf) dtdf= Jff 1 X(f) 12 df
t

Ps — Time-frequency scaling: Tk (tf) = Tx (at, 'g Yfor X(t)=VNlal x(at)witha=0
[T df -
Pg - Instantaneous frequency: =~ = f(t)= on dt &9 x ()]
[ Tewp ar
i
) | t Tt dt L d
ot _ __1d | |
P10 ~ Group delay: =tdf) = on df arg X (f)!

Jr Tx (L) dt

P11 - Finite time support: Tx (t.f) = O for t outside [t1,t2] if x (t) = O outside [t1,f2]
P12 - Finite frequency support: Tx (t.f) = O for foutside [fi f2l if X (f) = O outside [f1./2]

P13 - Moyal's formula (unitarity): (Tx.y;» Ty ) = (1.%2) (Y1,52)"

P14 - Convolution: Tk (t.f) = jt, Th(t—t'f) Tx(t'f) dt’ for % (t) = jt, ht—t) x(t’) dt’
P15 — Multiplication: Tk (t,f) = ff, Th (tf— f') T (tf") df" for X (t) = h (t) x(t )

Pis — Fourier transform: Tk (t.f) = Tx [if,ct )for X(t)= \/;I_X (ct)with c#0

P17 - Chirp convolution: Tx (t.f) = Tx (t —{j) for % (t)=x(t) * Viel ei2mgt

. c2
P1s - Chirp multiplication: T (t.f) = Tx (t.f~ ct ) for X (t) = x (t) e’ 23"

32 IEEE SP MAGAZINE

APRIL1992




[ TABLE III.
PROPERTIES OF THE WIGNER DISTRIBUTION AND THE AMBIGUITY FUNCTION. The WD properties,
denoted P;, are listed on the left-hand side while the AF properties, denoted P;, are listed on the right-hand
side. The WD properties P; are numbered according to Table 1I.

i ‘ Pi | P;
1 W' (tf) = W (L) A (T, - V)= A (T, V)
2 | X)=x(t-to)> X(t)=x(t-to) =
Wx (t.f) = Wx (t- to.f) | A% (T, V) = Ax (T, V) o 2mlov
|
3L R =x() e L R =xt) ey
‘ W (tf) = We (L= o) A5 (1, V) = Ax (1, v) & 2008
] W dr=per = 1x o | A0V =Re(v) = | X+ X () df
5 i _"!WX(tvf)dtsz(f):|X(f)|2 AX(T,O):rx(t):J‘Ix(t+t))5:(t)dt
6 , — n | |2 n n
; jtjft"Wx(tJ)dtdf le X(t)1* dt IR I S :Jtnlx(t)Ith
: J2n ) | avt o
7 "Wty dtdf=] " Ix()12d " an
| Uff s jff ey e S acco)| =[x eizar
J2n | | dt oo 1
8 P X)) =VNlal x(at)= xt)=Nlal x(at)=
Wk (tf) = Wy [at, ’({] x-(t,v):Ax[at, Z;J
9 | [ rwaes ar 9, o
{;—fx(t) LJ" atAA (twv) T:oe dv:fx(t)
J}W;At,f) af J2rn J. Ax(0.v) e/ 2™ gy
.
10 [ twaes) de | P Ay (T’V)l 2 g
=t () 1 elov -0 o
5 Jl WutSf) dt Jj2n J' Ax (1,0) €72V gr
T
11, x(t)=0fort outside [t1 t2]= x(t)=0for t outside [t].to]=
Wx (tf) =0 for t outside [t].t2] Acx(tv)=0for Itl >t -t1
12 X (f)=0 for f outside [f1 fol= X (f)=0 for f outside [fi fo]=
Wi (t.f) = O for f outside [fi fa] Ac(v)=0for Ivl >f-fi
131 (W W) = (x1.32) (1.2)" (Axiyr Axg.y) = (X1,X2) (Y1.Y2)”
14 x)=] he-tyxiyd = )?(t):ft h(t-t)x(t)dt’ =
t” ’
‘ W)?(f,f)=,[/Wh(t—t'~f) Wx (t’ f) dt’ A}(T.V):j,Ah(t—t'.V)Ax(I’,V)d‘['
t T
15 X(t)y=h({t)x(t)= X(t)y=h(t)x(t)=
i Wx (t.f) = ‘[f' Wh (tf - f") Wx (tf") df’ Az (T,v) = f An (Vv = V) Ax (T,V) dV’
16 ) =Viel Xeet)=  x)=Viel X(ct)>
Wi(tfhwx[‘ L Ct] Ax(r.v>=Ax[— Zaj
. C 2 . C2
H X(t)y=x(t)=Nicl e/2mt = X(t=x(t)=Nlcl e/?%" =
Wi(t‘f):Wx[t—g,f] Ag(t.v):Ax[r—ﬁ.v]
‘ . C 2 N C2
'8 i Rt =x(t) e/ ¥ = X(t)y=x(t)el 2l o
L Wkt = Wa(tf—ct) Az (1) = Ax (1v - 1)
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QUADRATIC TIME-FREQUENCY
REPRESENTATIONS

Energetic and Correlative
Time-Frequency Representations

Although linearity of a TFR is a desirable property,
the quadratic structure of a TFR is an intuitively
reasonable assumption when we want to interpret a
TFR as a time-frequency energy distribution (or “instan-
taneous power spectrum” [Pag52, Levi67, Rih68b,
Ack70, Grac81]), since energy is a quadratic signal
representation. An “energetic” TFR T, ( tf) seeks to
combine the concepts of the instantaneous power

D (t)= Ix(t)l2 and the spectral energy density

P.(fH=1X(Sf )I2 Ideally, this energetic interpretation
is expressed by the marginal properties

IT)AtJ)df=p)g(t)= Ix1?
! (3.1)
JTA(tJ)dt:Px(f): L X(f)12

t

which state that the one-dimensional energy densities
px(t) and Px (f) are “marginal densities” of the TRF
Tx ( t.f) [Wig32-71]. As a consequence, the signal ener-
gy Ex=[ 1x12dt = [ 1X(f)12df can be derived by in-
tegrating Tx ( t.f) over the entire time-frequency plane.
Other desirable mathematical properties of energetic
TFRs may be found in Table II.

The marginal properties relate the TFR’s frequency
and time integrals to the energy densities |x{f)1” and
I X(f )12, respectively, but they do not warrant the
interpretation of T,{tf) as a “time-frequency energy
density” at every point in the time-frequency plane. This
concept is a priori impossible since the uncertainty
principle [Papo77, DeBr67] does not allow the notion of
“energy at a specific time and frequency” [Cla84].

Many quadratic TFRs may be loosely interpreted in
terms of signal energy even though they do not satisfy
the marginal properties. Here, two prominent examples
are the spectrogram and the scalogram, defined as the
squared magnitudes of the linear TFRs considered in
the previous section:

2

SPECY(t.f) & ‘S”Im‘;’ (tj)‘

9 (3.2)
SCALY (tf) 2 | wr (i)

The spectrogram has been used extensively to analyze
speech signals [Koe46, Pot66, Rab78] and other “non-
stationary” signals. Similar time-varying spectral rep-
resentations are the sonagram, rayspan, spectran
[Kod78], and FTAN [Levs72]. The scalogram [FlaP90b,
Rio91,92] can be considered as a “constant-Q version”
of the spectrogram.

Apart from the “energetic” interpretation of quadratic
TFRs, there exists another interpretation in terms of
correlation functions [CohL86, Hla91c]. A “correlative”
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TFR Ty(z.v) seeks to combine the temporal correlation
r{7) and the spectral correlation R(v) defined below,
both of which are again quadratic signal repre-

sentations. Ideally, this is expressed by the “correlative
marginal properties”

T1,0) = r (1) = j X(t+1) X(t )dt

¢ , (3.3)
T0, v) = Ryv) = J.X(f+v) X (fHdf
s

Note that the variables t and v in the correlative TFR
Tx(t,v) are the time lag and frequency lag, respectively.

The Quadratic Superposition Principle

The spectrogram of the sum of two signals x; (1) + x,(f)
is not simply the sum of the individual spectrograms

SPEC () + SPECY! (t,f); hence, the linearity struc-

ture of the STFT is violated in the quadratic
spectrogram. In fact, any quadratic TFR T, satisfies the
“quadratic superposition principle”

X(t) = cyx(h) + () =

TU6f) = 1oy T, (6) + 16 1P T (tf)

+ 06T, (Ef) + czc’;TXTxl(th)
where Ti{tf) is the “auto-TFR” of the signal x{f) and
Ty x(tS) is the “cross-TFR” of the two signals x1(t) and
xo(t), with Txdt.f) = Tt ). Note that the cross-TFR
T, x(tf) is bilinear in the signals x1(f) and xu(t). Ex-
amples of cross TFRs will be given in the next section.

Generalizing the quadratic superposition principle to

N

an N-component signal x(t) = ZCka(t), we obtain the
k=1
following rule [FlaP84c, Hla92a]:
* To each signal component c¢x{f), there cor-
responds an auto-component (“signal term”)

fegl 2T,ck(t‘f B
* To each pair of signal components ¢, () and cp(8)
(with kz0), there corresponds a cross component (“inter-

ference term”) ckchXk XN + g cZTxl ) Xk(tj ).

Thus, for an N-component signal x{f), the TFR
T4t f) will comprise N signal terms and

2

er of interference terms grows quadratically with the
number of signal components, a fact that often makes
the visual analysis of the TFR of multicomponent sig-
nals difficult.

The interference terms of the spectrogram and the
scalogram are oscillatory structures which are
restricted to those regions of the time-frequency plane
where the corresponding auto representations (signal
terms) overlap. Hence, if two signal components are
sufficiently far apart in the time-frequency plane, then
their cross representation (interference term) will be
essentially zero [Kad92b, Hla92a, Ril89, Jeo90a,

LN = N(N-1)/2 interference terms. Note that the num-
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1. Dirac impulse x (t ) =8 (L - to) f
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Wit f1=381t—to)

2. Complex sinusoid x ( { ) = e / ™ot fi
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3. Chirp ( linear FM ) signal x ( () = ¢ 42" 5
f f=ct
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Fig. 9. WD and AF of simple monocomponent signals.

Rio92]. This property is generally deemed desirable. On
the other hand, a disadvantage of the spectrogram and
the scalogram is their poor time-frequency concentra-
tion (or resolution). It will be shown in a later section
that there exists a general tradeoff between good time-
frequency concentration and small interference terms.
The Wigner distribution, to be discussed next, has
excellent time-frequency concentration but substantial
interference terms.

Wi%ner Distribution and
Ambiguity Function

Definitions and Properties

Among all the quadratic TFRs with energetic inter-
pretation, the Wigner distribution (WD) [Wig32-71,
Vil48, Cla80a-c, DeBr73, FlaP80]

APRILT992

- 2y

Axv(tv) =€ 3Ty

Ay (tvy=e 12T ()

v

AdTv) =3V - c1)

v

N
"

)

\

W\:_L/(tvf) 2 j x(t+ ;) y“([ _ ;) e*jQrtfrdT
: , (3.4)
[xge Y- ey

.

satisfies an exceptionally large number of desirable
mathematical properties [Wig32, FlaP83a, Cla80a,c,
CohL89] as summarized in the lefi-hand side of Table
III. For example, the auto-WD is always real-valued,
and the WD preserves time shifts and frequency shifts
of the signal. The WD satisfies the marginal properties
(8.1). that is, the frequency or time integrals of the WD
correspond to the signal’s instantaneous power and its
spectral energy density, respectively. Hence, the WD
can be loosely interpreted as a two-dimensional dis-
tribution of signal energy over the time-frequency
plane. However. as mentioned earlier, the uncertainty
principle prohibits the interpretation as a pointwise
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time-frequency energy density [Cla84, Mec87]; this
restriction is also reflected by the fact that the WD may
locally assume negative values [Esc79, Hud74,
JanA85,92, Mou85]. The instantaneous frequency in
(1.1) and the group delay in (1.2) can be evaluated using
local first-order moments of the WD.

Among the class of correlative TFRs, an equally
important role is played by the ambiguity function (AF )
[Wo0053, Papo74, Rih69, Sie58, Sko62, Szu81, Stu64,
Van71, Tit66, Aus85]

Ay 2 Jx(t+%) Y- %) o Pty
t (3.5)
= J X(f+ %)Y*(f— %)eﬁ’”fdf
I

The AF can be interpreted as a joint time-frequency
correlation function. Specifically, it satisfies the “cor-
relative marginal properties” in (3.3); when evaluated
along its axes, i.e., for v=0 or 1=0, it simplifies to either
the time-domain or the frequency-domain correlation
function. In addition, the maximum value of an auto AF
occurs at the origin and equals the signal's energy, i.e.,

| Adtv) 1< A0.0) = | 1x(6)1%dt. The right-hand side of

Table III lists some mathematical properties of the AF
[Van71, Papo77]. We note that the squared magnitude

of the AF, |Ax,y('r,v)lz, is commonly called ambiguity
surface (AS) although some authors use the name
“ambiguity function” for IAx_y(T,V)IZ, rather than
Ax,y(t,v) [Van71].

The WD and the AF are duals in the sense that they
are a Fourier transform pair [Cla80c, Vil48, Szu81],

Ay (TV) = J J Wx.y(tf) e 2rvt- s (3.6)
tf

This duality is reflected by the mathematical properties
of the WD and the AF listed in Table IIL.

Figure 9 depicts the WD and the AF for some simple
monocomponent signals [Cla80a]. We see, in par-
ticular, that the WD preserves the time or frequency
concentration of the signal. This is different from the
spectrogram and the scalogram which generally intro-
duce some broadening with respect to time and fre-
quency.

Interference Geometry

Improved time-frequency concentration [Nut88b,
JonD92, JanA82, Cla84] and an extensive list of
desirable mathematical properties are attractive fea-
tures of the WD. On the other hand, certain charac-
teristics of the WD'’s interference terms (ITs) often cause
problems in practical applications. Whereas the ITs of
the spectrogram or the scalogram will be zero if the
corresponding signal terms do not overlap, the ITs of
the WD will be nonzero regardless of the time-frequency
distance between the two signal terms. The “inter-
ference geometries” of the WD and the AF are illustrated
in Fig. 10; they need to be taken into account when
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Fig. 10. Interference g and the AF. Two sig-
nal components occurring around time-frequency points (t1, fi)
and (t2. f) give rise to two signal terms and one interference
term (IT) in both the WD and the AF. For the following discus-
sion, we define the center point (t12, fi2) and the lags T12, V12
as tiz = (h+t2)/2, fiz = (i+R)/2; 112 = tit2, iz = fif2.

{a) Interference geometry of the WD: The signal terms are lo-
cated around (t1, f1) and (2, f2), respectively. The IT is located
around the center point (t12, fi2). It oscillates with respect to
time with oscillation period 1/ 1vi2!, and with respect to fre-
quency with oscillation period 1/ t121. The rapidity of oscilla-
tion increases with growing distance between the signal points
in the time-frequency plane. The direction of oscillation is per-
pendicular to the line connecting the two signal points.

(b) Interference geometry of the AF: The signal terms are lo-
cated around the origin of the (t,v)-plane. The IT consists of two
subterms located around the “lag points” (t12, vi2) and

{-t12, —v12), respectively.

(c) “Inner” interference: In general, ITs occur also in the case of
monocomponent signals. The simple geometric laws discussed
above are still valid. The figure shows the WD of a complex fre-
quency modulation signal. The signal’s energy is concentrated
along the curved instantaneous frequency: this also defines
the WD's signal term. Oscillatory ITs are seen to exist midway
between any two points on the signal term.
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interpreting the WD or AF of more complicated signals
such as multicomponent signals or signals with non-
linear frequency modulation. In general, the ITs of the
WD can be identified by their oscillatory nature, while
the ITs of the AF are characterized by their locations
away from the origin of the (t,v)-plane [FlaP84c.
Hla84,92a, JanA82]. The attenuation of WD ITs by
means of smoothing will be discussed in later sections.

From a practical viewpoint, ITs are troublesome
since they may overlap with auto terms (signal terms)
and thus make it difficult to visually interpret a WD or
AF plot. However, it should be noted that quadratic
cross terms naturally occur in the energy densities p (1),
P(f) and the correlations r(1),R(v) (see (3.1) and (3.3)).
Therefore, if one wants to interpret a quadratic TFR as
a two-dimensional time-frequency energy distribution
or time-frequency correlation, with the respective mar-
ginals equalling the one-dimensional energy densities
(cf. (3.1)) or the one-dimensional correlations (cf. (3.3)).
then it should be clear that the quadratic TFR must
contain cross terms as well. Indeed, it can be shown
that in many cases oscillatory and partly negative ITs
must be present or the marginal properties and instan-
taneous-frequency/group-delay properties cannot be
satisfied [Cla80c, Wig71, Hla92a]. Also, ITs are neces-
sary for a TFR’s unitarity [Hla92f] or, equivalently, for
Moyal’s formula [Moy49, Cla80al (cf. Tables Il and V) to
hold. Moyal’s formula is critical for the time-frequency
formulation of optimum detection and estimation
methods [Kay85. Kum84a, FlaP88] and for a closed-
form solution to the signal synthesis problem [Boud86,
Hla92b.e].

Applications of the WD

The WD has served as a useful analysis tool in fields
as diverse as quantum mechanics [Wig32-71, Moy49.
Ber77, Kru76, Oco83], optics [Bast81b,86,92, Bre82.
Jia84, Oje84, Szu86], acoustics [Day88. Boa88a.
FlaP90c, MarN86a, JanC83, Pey85, Yen87|, bioen-
gineering [Abe89a, Boua84, FlaP86, Kit87, Mart86,
Verr89, Morg86], image processing [Sah90, Jac82.88,
Cri89], and oceanography [Imb86]. Several researchers
have used the WD to analyze time-varying systems
[Pei88, Kum87, Hla92c,d], and highly non-stationary
signals [Whi87, Kob86, Vel89b]. The WD has been
suggested as a method for analyzing the phase distor-
tion encountered in a variety of audio engineering
problems [JanC83, Prei82-87, Vers88] and non-
linearities or defects in systems [For89, Ada87. Boa88b.
Zhu90]. It has been used to analyze speech [Boa86a,
Che83, Gar87, Pres83, Wok87, Ril89, Vel89a]. seismic
data [Boa86c¢,90a, Bole87, Boua83, Boud87, Day88].
and mechanical vibrations [Chi87]. A coding applica-
tion in covert optical communication systems has been
proposed in [Szu81]. Researchers have applied random
signal theory to the WD [FlaP83b,87b, Boa86b, Ham85,
Hla91b, JanA79, Mart85a, Whi89,90b] and have used
the WD for signal detection [FlaP88, Boa90a,90b.91b,
Kay85, Kum84a, Rao91, Mul88], spectrum and instan-
taneous frequency estimation {CohL91, Har89, Kay85,
Whi88,90a, JonG90. Vel90, Nut88a, Ami87. Hea9l,
Won90, Rao90, Boa89,90a, CohF88. Ram87], and pat-
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tern recognition {Boa87a, Boua84. Kum84b, Abe89b,
MarN84]. WD synthesis techniques [Boud86,92a,
Hla91b.92b,e, Jeo90b.91, Kra88,90,93, McH89,
Kum86. Raz90, Sal85. Yu87] have been used to perform
time-varying filtering, multi-component signal separa-
tion [Boud86,87, Hla89, Koz91, Jeo90b, Koc90] and
window and filter design [Boud83,92a].

Discrete-time versions of the WD and implementa-
tion issues have been discussed in [Cla80b,83, JanC83,
Boud83., Nut89, Pey86, Boa87b, MarN88, FlaP84a,
Bre83, Cha82, Jeo92b]. Optical WD implementations
are described in [Ath83, Bam83, Bart80, Con85,
Gup86, Iwa86. Ken088, Ste82, Sub84, Eas84, Mat86].

Several extensions of the WD definition have been
proposed. The expected value of the WD of a nonsta-
tionary random process is known as the Wigner-Ville
spectrum {FlaP83b,87b.92b, Ham85, Hla91d, JanA79,
Mart85a.b, Whi90b]. Recently. higher-order versions of
the WD have been proposed to generalize the ideas of
higher-order cumulants, moments. and spectra to the
time-frequency plane [Gerr88, Boa9la, Fon9la.b,
SwaA91]. Extensions of the WD to linear signal spaces
and linear, time-varying systems have been proposed
and applied for analysis and synthesis purposes in
[Hla91a,92c¢.d, Koz91].

Applications of the AF

The AF and its squared magnitude (the ambiguity
surface or AS) have been used extensively in the fields
of radar, sonar, radio astronomy. communications and
optics. In the radar case, the problem is the estimation
of the distance and velocity of a moving target, where
the distance and velocity correspond to the
"range” parameter T and the “Doppler shift” parameter
v. respectively [Wo053. Sko62, Sie56]. The location of
the maximum of the cross-AS of the received signal and
the transmitted signal can be interpreted as the maxi-
mum-likelihood estimator of the range 1 and Doppler
shift v in the case of a nonfluctuating point target
[Van71]. Also, the auto-AS of the transmitted signal
provides pertinent information about the performance
of the maximum-likelihood estimator and is thus a
major criterion for designing the transmitted signal.
Specifically. the Cramér-Rao bounds on the estimator’s
variances can be expressed in terms of the second
derivatives of the AS with respect to t and v, respective-
ly, measured at the origin. Furthermore, the estimator’s
sensitivity to clutter or reverberation may be related to
the values of the AS away from the origin [Van71]. For
ideal performance. the AS of the transmitted signal
should be a “thumbtack.” i.e., a narrow peak at the
origin of the (t.v)-plane and zero elsewhere [Sie56,
Van71]. Unfortunately. the thumbtack shape of a
realizable AS is limited by the “radar uncertainty prin-
ciple” which constrains both the maximum height and
the volume of any AS [Rih69. Sko62, Van71, Pri65.
Lieb90].

The AF and the AS have been used as analysis tools
for the selection of radar waveforms [Ler63, Pri63,
Rih69,71, Turi57. KlabOb, Miz75, Vak68]. The AF has
been applied to design and evaluate the performance of
a large variety of radar signals |Rih69, Cos84. Dru91,
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MarS90, Bel91, Tit91a-b] including chirp [Kla6Oa] and
other FM signals [Rih68a], uniform pulse trains [Ler58.
Rih69], Barker codes [Hol67], complementary signals
[Tury63, Siv82], phase-reversed codes, staggered pulse
trains and polyphase codes [Rih69]. The AF has also
been used to analyze the time-varying nature of com-
munication channels [Gers63. Kai63. Gaa68, Gol68,
KenR69] and to analyze optical systems [Papo74,
Gui78, Szu86]. Efficient algorithms for discrete-time AF
computation can be found in [Ste81. Tol85. Aus88.91b.
MarN91].

AF and AS synthesis algorithms [Wilc60, Widn61,
Sus62, Del67, Sed70, Wolf69, Debu70, Jou77] have
been used to derive phase-coded signals [Vak67a,76].
burst-pulse signals [Bla67], signals that minimize the
volume under the AS in certain regions of the (t,v)-plane
[Pri65. Vak67b] and signals whose cross-AF with a
given radar signal minimizes echo clutter given con-
straints on the target and noise output power [Stu68].

ShiftInvariant Time-Frequency
Representations

The Shift-Invariant Class (Cohen Class)
and Its Correlative Dual

Beside the WD, there exist many other quadratic
TFRs with an energetic interpretation. Most of these
TFRs satisfy the basic property of time-frequency shift
invariance (or “covariance”): if the signal x(9) is delayed
in time and/or shifted in frequency, then its TFR will
be shifted by the same time delay and/or modulation
frequency,

X(t) = xit-tg) et = TYLf) = Tty . fofy) B-7)

The class of all time-frequency shift-invariant. quad-
ratic TFRs is known as the quadratic Cohen class
[CohL66,89, Cla80c, FlaP80, Hla91c¢]. Prominent mem-
bers of Cohen’s class are the spectrogram (3.2) and the
Wigner distribution (3.4).

Every member of Cohen’s class may be interpreted
as a 2-D filtered WD. In fact, it can be shown that a TFR
T{tf) is a member of Cohen's class. denoted Cg, if and
only if it can be derived from the WD of the signal x{{)
via a time-frequency convolution [FlaP87c, Hla9lc,
Cla80c]:

T,e Cp &

Tt = | wgetr forn wu, phdeds
e
(3.8)

Each member Tx of Cohen’s class is associated with a
unique, signal-independent kernel function yr(tf) (or
2-D filter).

Clearly. the convolution in (3.8) will transform into
a simple multiplication in the Fourier transform
domain. Therefore, to every shift-invariant TFR T(t.f)
e Cp we now define a “dual correlative TFR"

Tqua{TV) as the two-dimensional FT [FlaP84c,

38 IEEE SP MAGAZINE

Touat x (0¥ = ¥iln,0) Ay (T,v)
Correlative v, T i T v, T
domain ]
Energetic
domain t] ¥t tf vt (10 A
A0 - oy Y W, an

Fig. 11. Fourier transﬁirm duality of the shift-invariant clas-
ses Ce and Cc. (The arrows denote Fourier transforms map-
ping time t into frequency lag v or time lag 1 into frequency f.)

CohL86]

Taan™) 2 | [ Taes) e 2 Dagay
tf

(3.9)

A prominent example of a pair of dual TFRs is given by
the WD and the AF since they are related by the Fourier
transform (3.9) (cf. Eq. (3.6)).

The class of dual correlative TFRs consists of all TFRs
satisfying the “correlative shift invariance” [Hla91c]

M) = xt-t) & 2 =

) = j 21 f,1— (V)
Taua @™ V) = TauadtV) g St o

which is motivated by the shift properties

Correlative
domain

Energetic
domain

t

BUD*,CKD.
GED*LD.PD,
PWD,SPEC SPWD

AUD,BED,
FO,PUD,
SCAL

A

BYO,
CWD,GWD,
AD.RGWD,
RID.WD

E

T

Fig. 12. Classification of quadratic TFRs (for TFR abbrevia-
tions. see Table I). The classes shown are the Cohen class Cg
of energetic TFRs which preserve time shifts and frequency
shifts: the correlative dual Cc of the Cohen class Cg: the af
Jine class Ag of energetic TFRs which preserve time shifts and
time scalings. and the shift-scale invariant class CAg which
_forms the intersection of Ce and Ag and comprises all ener-
getic TFRs that preserve time shifts. frequency shifts. and
time scalings. BUD and GED are members of CAE if N=M.
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TFRs (Cohen class (k:) AUTFRs of Cohen S clﬂss can be writ-
ten in the following four equivalent ways:

Ttf) = IP QT(t-t'.7) gt 1)l |e 2V dr
|t

= J[J«Mf} V) O WdSf” 1e 2™ Vay

me CLFS) Wt S ) dtdf’
tf’

= IJ[‘P7{T.V)AX(T.V)]eJ'2“ VO de dv

Tv

where g, 7) = x (t+ %)Xs’(t* %) and

Odfiv) =X (f+ %) X(f- %), and the WD, Wx(tf), and AF,
Ax{t,v), have been defined in (3.4) and (3.5), respectively.

(a) The quadratic signal representations gx(t,t), Gx(f.v), Wk(tf).
and Ax(t,v) are interrelated by Fourier trans sforms.

(b) Identical Fourier-transform relations connect the four ker-
nel functions ¢r (t,1),®1 (f,v).y1 (t.f), and W7 (1,v). A Cohen-
class TFR Tx(t, f) is uniquely characterized by any of the four
kernels.

1) = 1y (1) & 2V, R, (v) & 2rY

Ryv) =
of the one-dimensional correlations r(t) and RyV) (see
(3.3)). Note that in the dual correlative domain a time-
frequency shift of the signal x{(9) affects only the phase
and does not lead to an analogous time-frequency shift
as in the energetic domain (cf. (3.7)).

Most importantly, any TFR T, , Which is a member
of the correlative class, denoted C, can be derived from
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the AF of the signal x{t) by means of a multiplication
[FlaP84c, CohL86]:

Tauaix € Cc © TauadtV) =¥Yr(TVALTLY) (3.10)
The kernel W1(t,v) of Tquarx(t,v) in the above equation
and the kernel y1(t,f) of Tx{t,f) in Eq. (3.8) are a Fourier
transform pair just as the TFRs Tauat{(t,v) and Tidt.f)
themselves. The Fourier transform duality between the
energetic Cohen class Cg and the dual correlative class
Cc is illustrated in Figures 11 and 12.

Even if our only interest is in a TFR of the energetic
class Cg, it is often convenient to consider the dual
correlative TFR of C since the multiplication relation
(8.10) is usually simpler than the convolution relation
(3.8). Specifically, this approach is fruitful for the study
of smoothed versions of the WD [FlaP84c, Hla92a], as
discussed in the next section.

Figure 13 shows four general expressions for ener-
getic, shift-invariant TFRs. A list of specific members of
Cg, together with their kernels and mathematical
properties, is given in Table IV. Finally, the middle
column of Table V lists constraints on the kernels of
Cohen’s class corresponding to the TFR properties
defined in Table II. A TFR satisfies a given property if
the TFR'’s kernel satisfies the corresponding constraint
[C1a80c, JanC83, Hla88].

Shift-Invariant WD Smoothing

Even though the WD is theoretically attractive due
to its mathematical properties, practical application of
the WD is often restricted by the occurrence of inter-
ference terms. Because interference terms are oscil-
latory, they may be attenuated by means of a smoothing
operation (i.e., lowpass filtering) [JanA85, FlaP84c,
Hla92a). The Cohen class Cg of shift-invariant TFRs
provides a convenient framework for WD smoothing.

According to (3.8), any shift-invariant TFR T, can be
derived from the WD via a convolution with a kernel
y(t.f). However, it is clear that this convolution will
result in a smoothing (or two-dimensional lowpass
filtering) of the WD only if the kernel y((t.f) is a suffi-
ciently smooth function. If this is the case, then we
shall call the resulting TFR a smoothed WD (SWD), and
the kernel y(t,f) will be called a smoothing function.

A deeper understanding of SWDs is greatly facilitated
by passing into the dual correlative domain. As dis-
cussed in the previous section (cf. (3.10)), the dual
correlative TFR is derived from the AF by multiplication
with a kernel W{(t,v) which is the FT of the smoothing
function y(t.f). Since the interference terms in the AF
are typically located away from the origin of the (t,v)-
plane as discussed in Fig. 10b, then the “weighting
function” ¥{(t,v) must be concentrated mainly in the
“lowpass” region around the origin in order to attenuate
the interference terms. Equivalently, W 4(t,v) must be
the transfer function of a two-dimensional lowpass
filter, which is consistent with the previous requirement
that y(t,f) be a smooth function [FlaP84c, Hla92a].

Unfortunately, this attenuation of interference terms
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TABLE IV.

SOME TFRs OF THE COHEN CLASS (CLASS OF ENERGETIC, SHIFT-INVARIANT, QUADRATIC TFRs) IN
ALPHABETICAL ORDER. The TFRs are defined in Table 1. The kernels ¢ (¢, 1) and ¥ (1,v) are defined

in Fig. 13. The properties P; are defined in Table II. A list of constraints on the kernels is given in Table V.

TFR oT(t 1) Y7 (1,v) Properties P; satisfied
Born- Jordan 1 sin(ntv) P1-Pi12, Pis
distribution (BJD) o el <1/2 e
0, It/t1>1/2
Butterworth g1 YT (1,v) 1 P1-P7, Pg (M=N),
distribution (BUD)! vot L BM@N|  Pg(M>1/2), P1o (N>1/2),
1 ’ (%J [V_Oj Pls (M=N)
Choi-Williams 2 1 2rw)? P1-P1o, P16
(exponential) Ve L exp [_ oft €xp {— e
distribution (CWD) arn Il 4|t} ]
Cone-kernel g, It/th <1/2 @ It sin(rtv) P1 (g(7) even), Po, P3, P11
distribution (CKD) 0, It/zl>1/2 g i
Generalized 7_1 Y1 (‘t,V) [z oM v 2N Pl—P7, PS (M:N),
exponential vt e [1'0] (Vo] Pg (M>1/2), P1o (N>1/2),
distribution (GED)? P14 (M=1/2), P15 (N=1/2),
P16 (M=N)
Generalized Wigner 3 (t+ a1 e 2mowv P2-Pg, P11-P12 (la1<1/2),
distribution (GWD) P13-Pis:
all other for a=0 (WD)
Levin distribution (LD) 5( LA ] edmitlv P1-P7, P11, P13, P15
2
Page distribution (PD) S(t _ I_rl] ety P1-P7, P11, P13, P15
2
Pseudo Wigner T T ) o T P1-P3
distribution (PWD) 3(t) “[2]" (‘ 2] "(2)” ( 2) P4 (In(0)1=1),
’ Pg (In(0)1=1)
Pg m(0)=1), P11
Real-valued general- 1 cos (2raTv) P1-P10, P11-P12 (la1<1/2),
ized Wigner 2 [3(t+om)+ 3 (t-an) Pie, all other for a=0 (WD)
distribution (RGWD)
Reduced interference 1 [t S () P1-P12, P16 (S(B) even)
distribution (RID)> It~ with
with constraints® constraints®
Rihaczek distribution P e TV P2-Ps, P11-Pis
(RD) 2
Smoothed pseudo ) T kAN 1 P1 (g(heR), Pg, P3
Smoos P I
distribution (SPWD)
Spectrogram (SPEC) v (_ T ] Y*[- 1 ] Ay (-1, -V) P1-P3
2 2
Wigner distribution &(t) 1 P1-P1g

d

B S

IClosed-form expression for @r (t, T) available for integer N (Papa91]
2Closed-form expression for ¢r (t, 1) available for N=1 [Papa91]
3Speciﬁc members of the RID class are discussed in [Jeo92a]

e functions s (o) & S (B) are constrained as follows:

say=0for lal >1/2,SP)e R, S(0)=1,

=0
p=0
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TABLE V.

TFR PROPERTIES AND CORRESPONDING KERNEL CONSTRAINTS FOR THE COHEN CLASS Cg AND THE
SHIFT-SCALE INVARIANT CLASS CAEg. The properties P; are defined in Table II. The kernels ¢r (¢, 1), @71 (f,v)
and ¥ (1,v) are defined in Figure 13. The kernels st (0)) < St (B) are defined in the text

section “The Shift-Scale Invariant Class.”

TFR property (cf. Table II)

Kernel constraint
(class (Cg)

Kernel constraint
(class CAE)

Pi1: Real-valued

P2: Time shift

P3: Frequency shift
P4: Time marginal
Ps: Frequency marginal
Pe: Time moments

P7: Frequency moments

Pg: Time-frequency scaling

YT (-1-v)= ¥r@v)
Always satisfied
Always satisfied
YrOwv)=1
Yr(1t,0)=1
¥YrO,v)=1

Y1 (1,0)=1

Y7 [af,ij =¥r(t,v)foraz0

SrPeR

Always satisfied

Always satisfied

St0)=1
Sr©0)=1
Sr0)=1
Sr0)=1

Always satisfied

Pg: Instantaneous frequency Wr(Ov)= 1 and g, ) -0 | Sr©@=1and ST(B)’ -0
at ~ dp _
=0 B=0
P10: Group delay Yr@0)=1and 2 ¥r(ty) -0 | Sr©=1and < sr@) =0
ov _ dp -
v=0 =0
P11: Finite time support or(tty=0for It/tl >1/2 st(o)=0forlal >1/2
P12: Finite frequency support &7 (fv)=0for If/vl >1/2 st(ay=0for lal >1/2
P13: Moyal’s formula (unitarity) I¥r(zv)l =1 {ST(ﬁ)I =1
Pi14: Convolution Y (11 + 12,V) = YT (11.V) Y1 (T2,V) Sr(B) = P
P15: Multiplication YT (1,v1 + v2) = ¥T (1,v1) W1 (T,v2) Sr(B) = e®
Pi16: Fourier transform wr [_ %‘a]z Wr(tv) for all ¢ %0 St (- B)=Sr(P)
P17: Chirp convolution wr (T _ % Vj —Wr () forall c#0 Sr (B) = constant
P1g: Chirp multiplication Yr(t,v-ct)=¥r(t,v)forall c20 St (B) = constant
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AF signal terms

Contour lines of

weighting function W _(1.v)

AF interference
term

Fig. 14. Weighting operation in the correlative domain. All
shaded regions are suppressed by the weighting. In general.
the weighting function ¥t (1,v) causes both a (desired) at-
tenuation of the interference terms and an (undesired) trunca-
tion of the signal terms. The truncation effect produces a loss
of time-frequency concentration in the SWD.

comes at the cost of a loss of time-frequency concentra-
tion, since a smoothing generally causes a broadening
of the WD’s signal terms [JonD92, Hla92a]. In the dual
correlative domain, this broadening transforms to a
truncation of the AF’s signal terms caused by the
weighting operation (3.10). Both the interference at-
tenuation effect and the truncation effect are illustrated
in Fig. 14 for the simple example of a two-component
signal. We note that another disadvantage of smoothing
is the potential loss of desirable TFR properties (cf.
Tables IV and V).

It is clear that there exists a fundamental tradeoff
between good interference attenuation and good time-
frequency concentration. A broad WD-domain smooth-
ing function ytf) (corresponding to a narrow
lowpass-type AF-domain weighting function ‘¥ [{t.v))
yields good interference attenuation but poor time-fre-
quency concentration, whereas a narrow smoothing
function y{t,f) (corresponding to a broad weighting
function W(1.v)) yields poor interference attenuation

but good time-frequency concentration. Figure 15 com-
pares the weighting functions Y {(t.v) of some specific
SWDs.

Spectrogram and Smoothed Pseudo-WD
Two particular shift-invariant SWDs deserve special

attention. The classical spectrogram (3.2) can be ex-
pressed as [Cla80c]

spec Vi) = T we— o= pywge ae dr
e
(3.11)

(Definitions of the STFT which differ slightly in the use
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Fig. 15. Effective support of the weighting function \Yt (t.v) for
some SWD types: (o) WD. (b) pseudo-WD., (c) smoothed
pseudo-WD. (d) spectrogram with long window. (e)
spectrogram with short window. and (f) Choi-Williams dis-
tribution.

of the window Y(t) in (2.1) produce a convolution form
slightly different from (3.11) [Cla80c]}). Due to (3.11), the
spectrogram is an SWD with smoothing function
yspec(t.f) = W{-t.—f). which is (except for axis rever-
sals) the WD of the spectrogram'’s analysis window y(t).
This, in particular, means that the overall spread of
yspec(l,f) may not be smaller than the minimum spread
prescribed by the uncertainty principle. As a conse-
quence, the smoothing in the spectrogram is quite
extensive, which results in substantial interference
attenuation but also in poor time-frequency concentra-
tion [Kad92b, Hla92a, Jeo90a). The freedom left is
essentially a tradeoff between the time spread, At, and
the frequency spread, Af. of the smoothing function
yspec(t,f) (cf. the resolution tradeoff of the STFT dis-
cussed previously).

This tradeoff is removed by the smoothed pseudo-WD
(SPWD)

spwp I gy = [ [ gt - o) HEp Wt e’
L

which allows the smoothing spreads, At and Af, to be
adjusted freely and independently of each other
[FlaP83b,84c, Wok87, Hla92a, Jac83]. The SPWD is
defined by a separable smoothing kernel
wspwp(l.f) = g(OH(f), in which g(t) and H(f) are two
windows whose effective lengths independently deter-
mine the time smoothing spread At and the frequency
smoothing spread Af, respectively. The separable struc-
ture of ywspwp(t.f) (i.e., wspwn(t.f) is the product of two
separate one-dimensional windows) yields significant
practical advantages for the SPWD. Specifically, the fact
that time smoothing and frequency smoothing are
decoupled results in great flexibility in the choice of the
time smoothing and frequency smoothing, ease of ap-
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plication, and efficient computation. The special case of
the SPWD corresponding to the choice g(t) = §(9 (i.e.,
no time smoothing or At = 0) is known as the pseudo
WD (PWD). The PWD is, in fact, a “short-time WD" using
a running analysis window [Cla80a-b, JanC83,
FlaP84b]. Figure 16 compares various SWDs in terms
of the realizable smoothing spreads At and Af.

In a stochastic framework, both the spectrogram and
the SPWD can be used as estimators of the Wigner-Ville
spectrum [FlaP83b,87b, Mart85a].

Other Shift-Invariant SWDs

The development of new shift-invariant SWDs is a
current research topic. Examples of recently defined
SWDs not mentioned previously are the cone kernel
distribution [Zhao90], the generalized exponential dis-
tribution {Boud91b, Papa91], and the Butterworth dis-
tribution [Papa91,92]. Other shift-invariant SWDs
correspond to a specific “shift-scale invariant” type of
WD smoothing (e.g., the Choi-Williams distribution) and
will be discussed in a separate section. All of these
SWDs feature a WD smoothing which is more sophisti-
cated than the simple smoothing employed in the
SPWD; they attempt to attenuate interference terms
while simultaneously preserving the signal terms
and/or desirable mathematical properties.

Affine Time-Frequency Representations

The Affine Class

An alternative to the energetic shift-invariant class
{Cohen class) Cg is provided by the affine class Ag, (see
Fig. 12) comprising all energetic, quadratic TFRs which
preserve time scalings (e.g., doubling the time scale of
the signal also doubles the time scale of the TFR while
halving the TFR’s frequency scale) and preserve time
shifts [F1aP89,90b,91b, Bert88,91, Rio92]:

%O =Vial fatty) = Tsit. )= T{ai.)

Note that a time-frequency scaling naturally occurs
when analyzing the Doppler effect in the case of
wideband signals [FlaP90a}. Any TFR Tx which is an
element of the affine class Ag can be derived from the
WD by means of an affine transformation [FlaP90b,
Rio92],

T,e Ap &
TdtSf) = ”m(f(t—t ), %)Wx(t Sf7at’df’
oy
(3.12)

where xm(o.p) is a two-dimensional kernel function
depending on the dimensionless variables a and B (but
not on the signal x{1)).

Members of the affine class Ag which are not mem-
bers of the Cohen class as well (i.e., those which do not
preserve frequency shifts) are the scalogram (3.2) and
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AL af
arbitrary

At=0

Fig. 16. Realizable smoothing spreads At and Af for (a) WD,
(b) pseudo-WD, (c) smoothed pseudo-WD, and (d)}
spectrogram. The possible choices of At and Af correspond to
any point in the shaded regions in the (At. Af)-quadrant. Of
the TFRs shown, only the smoothed pseudo-WD allows a free
and independent choice of the smoothing spreads At and A \f.
(TFRs implementing some more sophisticated smoothing, like
the Choi-Williams, cone-kernel, generalized exponential and
Butterworth distributions, cannot be characterized by simple
spreads At and Af and hence are not included in this com-
parison.)

the TFRs recently defined by Bertrand and Bertrand
[Bert88,91], Unterberger [Bert91, FlaP91b], and
Flandrin [FlaP91b] (see Table I). Conceptually, these
representations are similar to the constant-Q analysis
of the wavelet transform but in a quadratic (energetic)
framework. They are especially advantageous in the
case of hyperbolic FM signals [Bert91] such as those
emitted by bats [FlaP86, Alt70]. We note that a quad-
ratic TFR which is similar in the constant-@ spirit but
not a member of Ap has recently been proposed in
[Alt90] (see also [MarN86b]).

Affine WD Smoothing

If the kernel y(o..B) is a sufficiently smooth function,

then the affine transformation (3.12) causes an “affine
smoothing” of the WD [FlaP90b, Rio91,92]. Typically, the
affine smoothing results in a constant-Q characteristic,
i.e., the amount of time smoothing and the amount of
frequency smoothing are inversely proportional and
proportional, respectively, to the analysis frequency.
Such a constant-Q smoothing provides an interesting
alternative to the frequency-independent smoothing of
shift-invariant SWDs. A prominent example of a con-
stant-Q smoothing is provided by the scalogram (see
(3.2)) which can be written as [FlaP90b, Rio91]
scaLl ) = [T w (S )dt df?
e

Le-opl
7

S S
(3.13)
Thus, the scalogram’s kernel is essentially the WD of

the wavelet y(t),xscar(o,B) = Wy (_j% JoB) where fo is the

center frequency of the bandpass wavelet 1(t). Note the
analogy of the scalogram expression (3.13) to the
spectrogram expression (3.11). Both the spectrogram
and the scalogram implement a rather extensive
smoothing of the WD.
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Shift-Scale Invariant TFRs

The Shift-Scale Invariant Class

Since the axioms defining the Cohen class Cg and
the affine class Ag are not mutually exclusive, there
exist TFRs which belong to both classes, i.e.. which
preserve time shifts. frequency shifts. and time scal-
ings. These “shift-scale-invariant” TFRs form the inter-
section CAE = Cg N Ag of the Cohen class Cg and the
affine class Ag (see Fig. 12). They may be derived from
the WD by both the convolution (3.8) and the affine
convolution (3.12). However, although the shift-scale
invariant TFRs are members of the affine class, they do
not feature a constant-Q behavior since they are fre-
quency-shift invariant.

A characteristic feature of shift-scale-invariant TFRs
is that Wr(t,v) takes on the form of a “product kernel.”
i.e., ¥1(z.v) only depends on the product of t and v.

Txe CAE & YWi(1,v) = SH1v) (3.14)
The one-dimensional function S(p) fully characterizes
the TFR Tx. This implies that the time/time-lag kernel
¢1(t,7) (cf. Fig. 13) assumes the form

1 t

oT1(t,7) = FT?T[T]

where s7(a) is the inverse FT of Sqf) [FlaP87c.
Hla88.91c]. A theoretically interesting member of the
shift-scale-invariant class CAg is the family of general-
ized WD (GWD, see Table 1) [Cla80c. JanA82, FlaP87a.
Hla92a] which encompasses the WD and the Rihaczek
distribution [Rih68b.69, Cla80c] as special cases. A list
of constraints on the kernels st (o) or St (B) correspond-
ing to the properties of Table Il is given in the right-hand
column of Table V [Hla88, Jeo92a).

Shift-Scale Invariant WD Smoothing

While the GWD is interesting mainly from a formal
viewpoint, other shift-scale invariant TFRs are of more
practical importance since they may be interpreted as
smoothed WDs (SWDs) and thus feature an overall
reduction of interference terms as compared to the WD.
A theoretical disadvantage of many SWDs such as the
spectrogram, SPWD, and scalogram is the loss of most
of the attractive mathematical properties of the WD (cf.
Table IV). In contrast, shift-scale invariant SWDs are
capable of retaining many of the properties satisfied by
the WD [Je092a, Will91, Hla92a]. For example, the
simple condition S7{0) = 1 implies that the resulting
product kernel in (3.14) satisfies
¥Y1(1,0) = ¥r(O,v) = 1 which guarantees validity of the
marginal properties (cf. Table V}.

A shift-scale invariant TFR Ty will be an SWD only if
the function S7(B) is concentrated around =0 and thus
tends to zero for large IBI, since only then is the
ambiguity-domain weighting function ¥r(t.v) = St(tv)
concentrated mainly around the origin of the (t.v)-
plane. A prominent example of a shift-scale invariant
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SWD is the Choi-Williams distribution or exponential
distribution [Choi89] for which Spp) is Gaussian,

421{[5»2 ‘o

Scwnif) = € . Furthermore. the “reduced-inter-

Jference™ distributions have been defined in [Jeo92a,

Will91] as a family of shift-scale invariant SWDs satis-
fying a large number of desirable mathematical proper-
ties (see Table IV).

While shift-scale invariant smoothing is compatible
with nice mathematical properties of the resulting SWD,
the product formWr(t.v) = Sq(tv) of the weighting func-
tion ¥1(t.v) results in certain limitations of interference
attenuation. The essential support of the weighting
function W(t.v) = S7(1v) necessarily is a cross-shaped
region of the (t.v)-plane with hyperbolic boundaries (i.e.,
v = constant / 1) as shown in Fig. 15f: specifically,
Y1(1.v) is constant along the t-axis and the v-axis. This
means that the attenuation of interference terms cor-
responding to signal terms occurring either at the same
time or at the same frequency (i.e.. zero time or frequen-
cy lag) will be somewhat limited, since here the cor-
responding interference term of the AF intersects the
v-axis (1=0) or the t-axis (v=0). respectively [Hla92a.
Papa91., Urb90]. The resulting behavior will be il-
lustrated in a later section (cf. Figs. 19 and 20).

Signal-Adaptive SWDs and TFRs with
Higher-Order Nonlinearity

A significant performance gain may often be obtained
by adapting the smoothing characteristics of an SWD
Lo the signal x{{) to be analyzed [JonD90. And87, Kad89.
Bara91]. Of course, the resulting signal-adaptive TFR
is then no longer quadratic. For example, the optimum
choice of a Gaussian smoothing in the case of FM
signals with known instantaneous frequency is dis-
cussed in [And87]. Another example is the use of a
radially-Gaussian weighting function W 1(t,v) where the
Gaussian spread in each radial direction in the (t.v)-
plane is optimally adapted to the signal [Bara91] (see
the radially-Gaussian kernel distribution in Table I).
This scheme is particularly suited for multicomponent
signals consisting of linear FM (chirp) components.

Higher-order versions of the WD have been proposed
in [Gerr88. Boa9la. Fon91a.b, SwaA91]. A highly non-
linear TFR (listed in Table I under the acronym CND)
which satisfies the marginal properties while being
always nonnegative has been considered in
[CohL85.89]; an important shortcoming of this TFR is
debated in [JanA87].

SIMULATIONS AND APPLICATIONS

No one TFR is perfect for all signal processing ap-
plications. Therefore. in this section, we give examples
which apply various quadratic TFRs (specifically,
smoothed WD versions) to synthetic and real data in
order to illustrate the relative performance of these
TFRs in some specific situations and applications. We
emphasize. however, that the limited results presented
in this section should not be used as the only basis for
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adopting a particular TFR for a specific signal analysis
task. Depending on the type of WD smoothing featured
by the TFR, any TFR will perform well for some classes
of signals or applications and poorly for others.
Moreover, the results obtained also depend heavily on
the extent of smoothing which usually can be adjusted
via one or more parameters. Finally, much depends also
on the way the resulting TFR surface is displayed
graphically. A thorough discussion of all these issues
would go far beyond the scope of this paper.

Interference Terms of the Spectrogram,
Scalogram, and WD

In applications, the interference terms (ITs) of quad-
ratic TFRs are often a problem. The ITs of the

spectrogram and the scalogram occur only in those
regions of the time-frequency plane where the auto-
TFRs of the signal components overlap; hence, if these
auto-TFRs do not overlap, the ITs are zero [Kad92b,
Hla92a, Ril89, Jeo90a]. In contrast, the ITs of the WD
always occur midway between each pair of signal com-
ponents, whether the auto-WDs overlap or not.

We will illustrate this point using the two-component
signal x(t) = x1 () + x2 (9 consisting of the complex
sinusoidal bursts

J2nfit O< t< t Jj2mfat o< t
H=1€ , O<t< 1y, d n=.€ , <t ts
o {O, otherwise and x2() 0, otherwise

Figure 17a shows the signal x{t) for the parameters t; =
16 ms, tz = 48 ms, t3 = 64 ms, fi = 800 Hz and f2 = 1800
Hz. The signal’'s spectrogram, scalogram, and WD are
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Smoothed pseudo Wigner distribution

frequency

Choi-Williams distribution

frequency

Fig. 19. (a) Smoothed pseudo-WD and (b) Choi-Williams distribution of a signal consisting of four time-frequency shifted
Gaussian signal components located at different times and _frequencies.

Smoothed pseudo Wigner distribution

frequency

time

@)

frequency

Fig. 20. (a) Smoothed pseudo-WD and (b) Choi-Williams distribution of a signal consisting of four time-frequency shifted
Gaussian signal components, where two components occur at the same time and the other two components occur at the same

frequency.

plotted in Figs. 17b-d, respectively. Since for this choice
of parameters the signal components’ auto-
spectrograms and auto-scalograms do not overlap,
there is no IT in the spectrogram and the scalogram. In
the WD, on the other hand, a rapidly oscillatory IT is
clearly visible midway between the auto-WDs.

Figures 18a-d show the signal ) and its
spectrogram, scalogram, and WD, respectively, for the
parameters t1 = 16 ms, {2 = 4 ms, t3 = 20 ms, f1 = 800
Hz and fa = 1000 Hz. Now the signal terms of the
spectrogram and scalogram overlap, leading to a non-
zero, oscillatory IT. To illustrate the effect of the IT, Figs.
18e-g show only the signal terms (without IT) of each
TFR, that is,

SPEC x(tf) + SPEC x(tf).
SCAL x(t.f) + SCAL x(tf).

and Wy (t.f) + Wx(tf). We also note from Figs. 18b
and 18c that neither the spectrogram nor the scalogram

shows two distinct spectral peaks at the frequencies fi
and fo.
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Interference Attenuation in Shift-Scale
Invariant SWDs

As discussed in the section on shift-scale invariant
WD smoothing, the IT attenuation in a shift-scale in-
variant SWD will be limited whenever the interfering
signal components are located around the same time or
the same frequency. Figures 19 and 20 compare the
smoothed pseudo WD (SPWD), which is not shift-scale
invariant, with the shift-scale invariant Choi-Williams
distribution (CWD) [Choi89] for two slightly different
signals. Each of the two signals consists of four time-fre-
quency-shifted Gaussian signal components [Urb90]. In
the first signal, all of the Gaussian signals occur at
different times and frequencies; it is here seen that both
the SPWD (Fig. 19a) and the CWD (Fig. 19b) feature good
IT attenuation. However, in the second signal, two of the
Gaussian signals occur at the same time and the other
two Gaussian signals occur at the same frequency. While
the IT attenuation in the SPWD (Fig. 20a) is unchanged,
the CWD (Fig. 20b) now shows significant ITs with large
spreads in the time and frequency directions.
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Fig. 21. Comparison of smoothed WD versions. The signal analyzed consists of two complex linear-FM chirp components and
one time-frequency shifted Gaussian component. {(a) WD, (b) pseudo-WD, (c) smoothed pseudo WD, (d) spectrogram with “short”
window, (e) spectrogram with “medium-length” window, (f) Choi-Williams distribution, (g) generalized exponential distribution,
(h) cone-kernel distribution, and (i) radially-Gaussian kernel distribution (signal-adaptive). Time and frequency are plotted in
the horizontal and vertical directions, respectively. The signal length is 128 samples, and the (normalized) frequency interval
shown is O to 1/2. These plots were created by R. Baraniuk, W. Kozelk, T. Manickam, G. Niedrist, and B. Wistawel.
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Comparison of Smoothed WD Versions

In Fig. 21, we evaluate the performance of various
smoothed WD versions for the case of a three-com-
ponent complex-valued signal consisting of two
“crossed” chirp signals (linear FM signals) and one
time-frequency shifted Gaussian signal. The goal is to
attenuate the oscillatory ITs while trying to preserve the
time-frequency concentration of the three signal terms.
This particular signal contains closely spaced and in-
tersecting linear-FM chirps which give rise to ITs occur-
ring near the origin of the ambiguity-function plane
((t.v)-plane, cf. Fig. 10b and Fig. 14). Hence, it is a
difficult test case for any quadratic TFR's ability to
suppress ITs without severely broadening the desired
signal terms.

As a point of reference, the WD (i.e., the limiting case
of no smoothing) is shown in Fig. 21a. The signal terms
corresponding to the chirp signal components are clear-
ly visible and highly concentrated, but the WD signal
term corresponding to the Gaussian signal component
is covered by the oscillatory IT caused by the two chirps.

The remaining figures show the results for various
types of WD smoothing. In the pseudo WD plot of Fig.
21b, the ITs oscillating in the frequency direction are
attenuated, revealing the Gaussian signal term. No
smoothing occurs in the time direction. The smoothed
pseudo WD (SPWD) is shown in Fig. 21c; it features an
additional time smoothing which attenuates the ITs
oscillating in the time direction. Most ITs are now
reasonably well attenuated but the time-frequency con-
centration of the signal terms has been impaired by the
smoothing. Figs. 21d.e show the spectrogram for two
different lengths of the analysis window. The “short”
window (Fig. 21d) produces extensive frequency
smoothing but little time smoothing, which results in
the Gaussian not being properly resolved. A “long”
window, on the other hand, would produce extensive
time smoothing but little frequency smoothing. The
result obtained with a compromise “medium-length”
window is shown in Fig. 21e. Compared to the SPWD
result (Fig.21c), the overall smoothing is unnecessarily
large in both spectrograms.

Figures 21f-h show the results of TFRs implementing
a more sophisticated type of smoothing. The Choi-Wil-
liams distribution (CWD) [Choi89] and the generalized
exponential distribution (GED) [Boud91b, Papa91] are
plotted in Fig. 21f and Fig. 21g, respectively. Like any
shift-scale invariant SWD, the CWD does not allow
independent choices of the amounts of time smoothing
and frequency smoothing. Indeed, in the CWD the
amounts of smoothing in the two directions are simul-
taneously controlled by a single parameter ¢ (cf. the
expression for the CWD weighting function ¥1(t,v) given
in Table IV). In this example, a comparatively large o is
needed to retain good concentration of the chirp’s CWD
signal terms; unfortunately, the resulting smoothing is
then not strong enough to sufficiently attenuate the IT
covering the Gaussian signal term. (A smaller ¢ will
uncover the Gaussian signal term but only at the cost
of poorer time-frequency concentration of all signal
terms.) In contrast, the GED (Fig. 21g) allows different
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choices of time smoothing and frequency smoothing
since it has several independent design parameters (cf.
the GED weighting function in Table IV). This additional
flexibility was utilized to choose the frequency smooth-
ing to be stronger than the time smoothing, which
results in an uncovering of the Gaussian signal term
with less loss of time-frequency concentration.

The result of the cone-kernel distribution (CKD)
[Zhao90] is shown in Fig. 21h. The specific form of the
CKD weighting function (in particular, Y1(0,v) = 0 in
Table IV} causes the CKD to feature good attenuation of
ITs oscillating in the time direction but potentially poor
attenuation of ITs oscillating in the frequency direction.
In this example, this property of the CKD results in an
inability of the CKD to uncover the Gaussian signal
term. Note, however, that the CKD preserves the signal's
finite time support.

Finally, Fig. 21i shows the result of the signal-adap-
tive radially-Gaussian kernel distribution {Bara91]. It is
seen that the signal adaptivity indeed leads to a clearly
improved performance regarding IT attenuation and
auto-term preservation as compared to the non-adap-
tive TFRs considered previously.

Bat Sonar Signals

TFRs have been used by Flandrin et al. to analyze the
active sonar echolocation systems used by bats
[F1aP86]. The bat emits different AM-FM-type signals for
hunting, navigation, and prey identification. The
SPWDs of signals emitted by a bat during the “hunting,”
“approach,” “pursuit,” and “capture” phases are plotted
in Figs. 22a-d, respectively. During the hunting phase,
before a potential prey has been identified, the bat emits
relatively long signals (Fig. 22a). The first part of the
hunting signal is an FM signal with rapidly decreasing
instantaneous frequency (IF ), allowing the bat to es-
timate its position. The second part has semi-constant
frequency, allowing the bat to estimate its speed. After
a prey has been located, the bat emits a succession of
“approach” signals, one of which is plotted in Fig. 22b.
Successive approach signals are characterized by a
gradual decrease in signal duration obtained by shor-
tening the semi-constant frequency component of the
hunt signal. Finally, in the “pursuit” and “capture”
phases (Figs. 22c¢ and 22d, respectively), the bat emits
harmonic signals in order to realize broadband signals
in a relatively short period of time.

The use of TFRs for IF estimation is considered next.
In Fig. 23a, Flandrin has plotted a slightly time-
smoothed PWD of a “hunting” signal. Figure 23b shows
an IF estimate (obtained from the SPWD’s local first-
order frequency moments, see property Pg in Table Ii)
for the “hunting” signal; here, the IF estimate is mean-
ingful since the signal is monocomponent. In contrast,
Fig. 24 shows the SPWD and resulting IF estimate for a
chirp-like bat signal superimposed with corrupting
echoes. Since the echoes overlap in time with the bat
signal, the IF of the overall signal significantly deviates
from the IF of the bat signal. In Fig. 25b, Flandrin
isolates the SPWD signal term corresponding to the
desired bat signal by multiplying the overall SPWD with
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Fig. 22. Smoothed pseudo-WDs of bat sonar signals. (a) “Hunting” signal, (b} “approach” signal, (c) “pursuit” signal, and (d)
“capture” signal. Time (O to 5.5 ms) is plotted horizontally and frequency (O to 110 kHz) vertically. These plots and those con-
tained in Figs. 23-26 were provided by P. Flandrin [FlaP86]; they were part of a study performed at Institut Chimie et Physique
Industrielles (ICPI) at Lyon, France with the support of the National Center for Scientific Research (CNRS) in France.

Fig. 23. (@) Smoothed pseudo-WD (SPWD) of a bat sonar sig- Fig. 24. (a) SPWD and (b) instantaneous frequency estimate of
nal emitted during a hunting phase, with the signal magni- a bat signal corrupted by echoes.

tude and the signal's Fourier transform magnitude plotted

along the horizontal time axis and the vertical frequency axis,

respectively, for comparison. (b) Estimate of the instantaneous
Jfrequency.

Fig. 25. (a) The SPWD of Fig. 24 and (b) a time-frequency Fig. 26. (a) The masked SPWD and (b) the instantaneous fre-
masking function (outlined in red) designed to zero out the quency estimate obtained from the masked SPWD.
time-frequency region corresponding to the corrupting echoes.
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Fig. o7, Tlmé}requency analysis of a bat sonar signal consisting of three nonlinear FM components. (a) WD. (b) smoothed
pseudo-WD, (c) spectrogram, (d) cone-kernel distribution, and (e) signal-adaptive radially-Gaussian kernel distribution. These
plots were created by R. Baraniuk and D. Jones from data provided by C. Condon, K. White, and Prof. A. Feng.
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a time-frequency mask whose region of support is
outlined in red. Since in the time-frequency plane the
echoes do not overlap significantly with the bat signal,
the mask is capable of suppressing the corrupting
echoes, as demonstrated in Fig. 26a. A satisfactory IF
estimate (shown in Fig. 26b) is then obtained from the
masked SPWD in Fig. 26a via local first-order frequency
moments.

In the next example, Baraniuk and Jones have com-
pared the results of the WD and various smoothed WD
versions obtained for bat sonar signals consisting of
three nonlinear FM signal components. In the WD (Fig.
27a), oscillatory ITs are seen to exist midway between
all pairs of signal terms. These ITs are suppressed in
the smoothed pseudo WD (Fig. 27b) with only a
moderate loss of time-frequency concentration. In con-
trast, the spectrogram’s extensive smoothing produces
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a significant concentration impairment (Fig. 27c). The
concentration loss in the cone-kernel distribution (Fig.
27d) is between that of the smoothed pseudo WD and
that of the spectrogram. Finally, the signal-adaptive
radially-Gaussian kernel distribution (Fig. 27¢) is seen
to produce good IT attenuation with very little broaden-
ing of the signal terms.

Bio-Acoustical Sounds

Williams et al. [Widm92, Zhe89] have used the
“reduced interference” distribution (RID) to analyze ab-
normalities in the temporo mandibular joint (TMJ). The
signal corresponding to an abnormal TMJ clicking
sound is plotted in Fig. 28a. Figures 28b-d show the
signal's WD, spectrogram, and RID, respectively. The
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WD. (b) spectrogram. and (c) scalogram of an ancalytic version of the acoustical response. The time-domain signal and its
spectral magnitude are plotted along the horizontal time axis and the vertical frequency axis. respectively. The plots in Figs. 29
and 30 were created by P. Flandrin et al. [FlaP90c. Ses89] in a study performed at Institut Chimie et Physique Industrielles
(ICPI) at Lyon. France. and at Laboratoire de Mécanique et Acoustique (LMA) at Marseille. France with the support of a grant
Jrom Directoire des Recherches et Etudes Techniques (DRET). Department of Defense. France.

WD (Fig. 28b) is seen to contain many oscillatory ITs.
The extensive smoothing inherent in the spectrogram
(Fig. 28¢) has suppressed all ITs present in the WD but
has also caused excessive spreading in the time direc-
tion. such that the initial broad-band burst is no longer
visible and the low-frequency component has been
broadened considerably. Compared to the WD and the
spectrogram. the RID (Fig. 28d) is a good compromise:
while it does not remove all of the oscillatory ITs. it
essentially preserves the time-frequency concentration
of the signal terms.

Acoustical Field Surrounding a
Submerged Spherical Shell

In various radar, sonar. seismic. and echo location
situations. “active” target identification is performed by
comparing a known emitted signal to the signal
reflected from an unknown target or obstruction.
Flandrin et al. [FlaP90c. Ses89] have used the SPWD to
analyze the scattered acoustical field induced by a thin
spherical shell immersed in water. The waves returned
by the shell depend upon the shell's physical properties
and geometry. In addition to the initial (specular) echo.
there are also “creeping” waves. i.e.. acoustical waves
which travel around the surface of the sphere one or
more times before they are reflected. These waves are
dispersive (i.e., different frequency components travel
with different propagation velocities). and their average
time separation or period results in a quasi-periodic
signal with harmonically spaced spectral peaks.

Classical methods of echo characterization estimate
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the size. thickness or composition of a target using
one-dimensional time-domain or frequency-domain
techniques. Temporal techniques [Ses89] are used to
analyze the arrival times of the initial specular echo and
the creeping waves. Unfortunately, the attenuation of
higher frequencies and the dispersive nature of the
waves causes the individual echoes to change shape
and to overlap: this makes the estimation of the echoes’
arrival times difficult. Spectral techniques may be used
to analyze target-induced resonance frequencies. but
cannot take into account the echoes’ dispersive nature.

Since the signal consists of a large number of in-
dividual signal components which overlap in both the
time and the frequency domain, it is difficult to analyze
using conventional one-dimensional techniques. How-
ever, the individual signal components are fairly disjoint
(non-overlapping) in the time-frequency plane and may
thus be analyzed separately using TFRs. In addition to
giving all the information that can ideally be found using
conventional one-dimensional techniques (e.g., arrival
time information. target-dependent resonance frequen-
cies. high-frequency propagation attenuation), a TFR
analysis also shows such time-varying characteristics
as velocity dispersion [FlaP90c. Ses89].

The SPWD of the acoustical response of a thin spheri-
cal shell is shown in Fig. 29a along with the signal and
its spectrum. The time-domain signal shows the suc-
cessive echoes generated by creeping waves. and the
spectrum shows the target-induced resonance frequen-
cies. However. the echoes’ dispersive character is
manifested only in the SPWD: it is visible from the
gradually increasing inclination of the SPWD signal
terms corresponding to successive echoes. indicating
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Fig. 30. (a) Smoothed pseudo-WD (SPWD) of the acoustical response of a thin spherical shell and (b) the signal's "time-frequency
signature” derived from the SPWD result. This time-frequency signature shows the specular echo (i). resonance frequencies with
strong damping factors (ii), or weak damping factors (iii). and dispersive creeping waves echoes (iv) with gradually increasing in-

clination.

that higher frequencies are travelling faster than lower
frequencies. Frequency-dispersion measurements can
be obtained very easily from the disjoint SPWD signal
terms corresponding to a small number of creeping-
wave echoes. For comparison purposes, the signal's
spectrogram and scalogram are plotted in Figs. 29b and
29c, respectively.

Based upon a barely time-smoothed PWD of the
signal, plotted in Fig. 30a, Flandrin et al. constructed a
“time-frequency signature” shown in Fig. 30b. This
time-frequency signature clearly indicates the arrival
time of the specular echo, the dispersive nature of the
creeping-wave echoes, and various resonance frequen-
cies, all of which provide useful information for target
identification and characterization.

Speech Analysis

For the past five decades, the spectrogram has been
one of the classical TFRs for the analysis of speech
signals. However, other TFRs incorporating a WD
smoothing which is less extensive than that of the
spectrogram may be advantageous whenever the “fine
structure” of a speech signal is of interest. Figure 31
compares various smoothed WD versions {including the
spectrogram) for a short speech segment consisting of
two pitch periods of a voiced speech sound. The speech
signal, shown in Fig. 31a, may be interpreted as the
response of the vocal tract to a quasi-periodic excitation
by the glottal pulse train. The resonance frequencies of
the vocal tract (formants) are dependent on the specific
sound spoken [Rab78].

Figures 31b-i show the signal's WD, pseudo-WD,
smoothed pseudo-WD, spectrogram, Choi-Williams dis-
tribution, generalized exponential distribution, cone-
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kernel distribution, and radially-Gaussian kernel dis-
tribution, respectively. The WD (Fig. 31b) features ex-
cellent time and frequency concentration, resulting in
a sharp display of both temporal features (the glottal
excitation) and spectral features (the formants), but it
contains a substantial amount of oscillatory inter-
ference terms (ITs). These ITs are essentially suppressed
in the spectrogram (Fig. 31¢) at the cost of significantly
impaired time-frequency concentration. The SPWD
result (Fig. 31d) shows that a judicious smoothing
which is less extensive than that of the spectrogram is
capable of sufficiently attenuating ITs without a
dramatic loss of time-frequency concentration. Both the
Choi-Williams distribution (Fig. 31f) and the general-
ized exponential distribution (Fig. 31g) are seen to
feature good concentration but significant residual ITs
between signal components occurring around the same
time or frequency. The cone-kernel distribution (Fig.
31h) is seen to contain significant residual interference
between signal terms occurring around the same fre-
quency. Finally, the signal-adaptive radially-Gaussian
kernel distribution is shown in Fig. 31i.

Time-Varying Filtering and
Signal Separation

WD-based signal synthesis techniques permit the
calculation of a signal whose WD is closest to a given
time-frequency “model function” [Boud86,92a,
Hla92b]. The application of these techniques to time-
varying filtering is considered in Figures 32 and 33.

A windowed, complex, linear-FM chirp signal (plotted
in Fig. 32c¢) was contaminated with complex, white
Gaussian noise with signal-to-noise ratio O dB. The
WDs of the original chirp and the noisy chirp are plotted
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Fig. 31. Time-frequency analysis of a voiced speech sound. (a) Two pitch periods of the vowel [a] spoken by a male German
speaker: (b) WD, (c] pseudo-WD, (d) smoothed pseudo-WD, (e) spectrogram, (f] Choi-Williams distribution, (g} generalized expo-
nential distribution, (h) cone-kernel distribution, and (i) radially-Gaussian kernel distribution of an analytic version of the
speech signal. Higher formants have been amplified by pre-filtering the speech signal. Time (O to 16 ms) is plotted horizontally
and frequency (O to 4 kHz) vertically.

APRIL 1992 IEEE SP MAGAZINE 55



128 ms

@
® /\/\f\/\/\/\j\/\/\/\N\NW

© _—\/\/\/\/\/\/\N\N‘W
0 time 128 ms é/

%

time

o
0 frequency 250 Hz
(d)
0
£ £
g g
© o
£ E
- -
(=] [=]
0 frequency 250 Hz (o] frequency 250 Hz
(o) 4]

Fig. 32. Noise suppression by means of WD masking and WD based signal synthesis. (@) Real part of a windowed. complex
chirp signal corrupted by white noise (SNR=0 dB): (b) real part of the signal estimate obtained by WD masking and signal syn-
thesis: (c) real part of the original (noise-free) chirp signal: (d) WD of the noise-free chirp signal: (e) WD of the noisy chirp signal:
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Fig. 33. Signal separation by means of WD masking and WD-based signal synthests. (@) Real part of a tiwo-component signal
consisting of two windowed. complex chirp components: (b) real part of the estimate of the lower-frequency chirp component ob-
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in Figs. 32d and 32e, respectively. While the WD of the
chirp signal is concentrated along the chirp’s instan-
taneous-frequency (IF ) line, the noise is scattered all
over the time-frequency plane. Hence, a nonlinear,
time-varying filtering resulting in noise reduction can
be achieved by i) multiplying the WD of the noisy chirp
with a suitable mask and ii) applying signal synthesis
techniques to the masked WD. Figure 32f shows the
masked WD. (We note that the mask can be designed
automatically based on a maximum-likelihood estimate
of the chirp’s IF obtained from the noisy signal [Kay85,
CohF88, Won90].) The result of the signal synthesis
algorithm (using the masked WD as time-frequency
model function) is shown in Fig. 32b to be very close to
the original chirp signal plotted in Fig. 32c. Note that,
since the chirp signal and the noise overlap significantly
in both the time domain and the frequency domain,
neither a time-domain windowing nor a conventional
time-invariant filtering could be used for noise suppres-
sion.

WD-based signal synthesis techniques can also be
used for isolating a desired component of a multicom-
ponent signal, provided that the WD signal term cor-
responding to the desired signal component does not
overlap significantly with other signal terms or ITs.
Figure 33e shows the WD of the sum of two windowed
complex chirp signals. The two-component signal is
plotted in Fig.33a, and the two chirp components are
shown individually in Figs. 33c and 33d. While the two
chirp components overlap significantly in both the time
domain and the frequency domain, their WDs are fairly
disjoint in the time-frequency plane. A mask was ap-
plied to the WD of the two-component signal, resulting
in the masked WD plotted in Fig. 33f. Figure 33b shows
a good approximation to the low-frequency chirp com-
ponent, which was obtained by applying the WD signal
synthesis algorithm to the masked WD of Fig. 33f.

CONCLUSION

Time-frequency representations (TFRs) are powerful
tools for the analysis and processing of "nonstationary”
signals for which separate time-domain and frequency-
domain analyses are not adequate. In this tutorial, we
have outlined the motivations, interpretations. mathe-

matical fundamentals, properties, and applications of

various linear and quadratic TFRs.

Although we have attempted to provide a coherent
framework of TFRs, a truly unified framework is difficult
to obtain because the large variety of existing methods
and approaches causes the field of time-frequency
analysis to be somewhat disparate. Also, possible ap-
plications of TFRs are as varied as, for example, time-
frequency filtering, speech analysis. efficient signal
coding, parameter estimation in radar and sonar, or
visual inspection of TFR plots by a human analyst. It is
thus clear that the choice of a TFR must depend on the
specific application.

A question which has led to some controversy in the
past few years is the choice of a quadratic TFR for the
visual analysis of nonstationary signals. The numerous
TFRs which have been proposed to this end may be
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interpreted as smoothed versions of the WD, with the
type of smoothing determining the amount of attenua-
tion of interference terms, loss of time-frequency con-
centration, and mathematical properties. Here again,
the choice of the “best” TFR depends on the nature of
the signals to be analyzed and on additional issues such
as the mathematical properties required, limitations in
computation and storage, etc. Once a specific TFR has
been selected, the user often has to select certain TFR
parameters (e.g., window lengths which determine the
amount of smoothing). Finally, the analysis result will
also depend upon the graphical representation of the
TFR surface (e.g.. 3D plots versus contour-line plots,
number and spacing of contour lines, etc.). Accordingly,
a successful application of TFRs (as is the case for many
other signal analysis methods) presupposes some de-
gree of expertise on the part of the user. It is seldom
possible to view time-frequency analysis as a “black
box” where the signal is input and some clear and
meaningful result is automatically obtained as the out-
put: some prior knowledge about the signal must
generally be available in order to select the most
suitable TFR and to adapt the TFR’s parameters to the
signal.

If the application at hand is an automated signal
analysis (rather than the purely visual one considered
above), then the existence of cross or interference terms
is not necessarily a problem; in fact, in some situations
(e.g.. optimum detection methods) cross terms are
necessary for a meaningful result.

TFRs continue to be a field of research. Interesting
recent developments include the wavelet transform, the
affine class and “wideband versions" of quadratic TFRs,
higher-order WD versions. the design of new kernels of
smoothed WD versions, signal-adaptive WD smoothing,
and the extension of WD analysis to linear signal spaces
and linear, time-varying systems.
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