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Orthogonal matrices
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¢ Orthogonal Matrix : AAT=ATA=|
— The matrix is square
— All row vectors are orthonormal to one another
« Every vector is perpendicular to the hyperplane formed by all other vectors

— All column vectors are also orthonormal to one another

— Observation: In an orthogonal matrix if the length of the row vectors
is 1.0, the length of the column vectors is also 1.0

— Observation: In an orthogonal matrix no more than one row can
have all entries with the same polarity (+ve or -ve)
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Overview

* More on matrix types

* Matrix determinants

* Matrix inversion

* Eigenanalysis

* Singular value decomposition
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Orthogonal and Orthonormal Matrices

¢ Orthogonal matrices will retain the length and relative
angles between transformed vectors
— Essentially, they are combinations of rotations, reflections and
permutations
— Rotation matrices and permutation matrices are all orthonormal

« If the vectors in the matrix are not unit length, it cannot
be orthogonal
— AATI=], AAl=]
— AA"= Diagonal or ATA = Diagonal, but not both
— Ifall the entries are the same length, we can get AAT = ATA = Diagonal, though
* A non-square matrix cannot be orthogonal
— AA'=l or ATA = |, but not both
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Orthogonal/Orthonormal vectors
f

AB=0 = xutyvtzw=0

« Two vectors are orthogonal if they are perpendicular to one another
— AB=0
— A vector that is perpendicular to a plane is orthogonal to every vector on the
plane

* Two vectors are orthonormal if
— They are orthogonal
— The length of each vector is 1.0
— Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
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Matrix Rank and Rank-Deficient Matrices

P* Cone = /

* Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices
— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices
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* Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices
— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms

= P=W (W'W)!WT; Projected Spectrogram = P*M
= The original spectrogram can never be recovered
o Pis rank deficient
= P explains all vectors in the new spectrogram as a mixture of
only the 4 vectors in W
o There are only a maximum of 4 independent bases
o Rankof Pis 4
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Non-square Matrices

49 ERE

X X oo Xy 19 ):1, ):/2 .. ):/N
DT R 6 0 oA v
X =2D data P = transform PX =3D, rank 2

* Non-square matrices add or subtract axes
— More rows than columns - add axes
* But does not increase the dimensionality of the data
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Non-square Matrices
XX, .. Xy S |:)21 )A‘z L. );N:|
N Voo o Wy L ) 1} Yo YVa - - Yy
45y ’
X = 3D data, rank 3 P = transform PX = 2D, rank 2
* Non-square matrices add or subtract axes
— Fewer rows than columns = reduce axes
* May reduce dimensionality of the data
5 Sep 2013 11-755/18-797 10
MLSH
The Rank of a Matrix
-
B 4
31 2 19
S5 101 6 0
¢ The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space
* The matrix can never increase dimensions
— Cannot convert a circle to a sphere or a line to a circle
¢ The rank of a matrix can never be greater than the lower of its two
dimensions
5 Sep 2013 11-755/18-797 1"
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= Projected Spectrogram=P * M
o Every vector in it is a combination of only 4 bases

= The rank of the matrix is the smallest no. of bases required to
describe the output

o E.g.if note no. 4in P could be expressed as a combination of notes 1,2
and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection
0 The rank of P would be 3!
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Matrix rank is unchanged by transposition
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* If an N-dimensional object is compressed to a
K-dimensional object by a matrix, it will also
be compressed to a K-dimensional object by
the transpose of the matrix
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* The determinant is the “volume” of a matrix

* Actually the volume of a parallelepiped formed from its
row vectors

— Also the volume of the parallelepiped formed from its column
vectors

* Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective

Volume =V, Volume =V,
08 0 o7 "

10 08 08

07 09 07|

* The determinant is the ratio of N-volumes

— If V, is the volume of an N-dimensional object “O” in N-dimensional
space
* Ois the complete set of points or vertices that specify the object
— If V, is the volume of the N-dimensional object specified by A*O,
where A is a matrix that transforms the space
- 1A=V, /V,
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Matrix Determinants

* Matrix determinants are only defined for square matrices

— They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

* Rank deficient matrices have determinant 0

— Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

* E.g.a3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it
does have area)

* Conversely, all matrices of determinant O are rank deficient

— Since they compress full-volumed N-dimensional objects into
zero-volume objects
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Multiplication properties

* Properties of vector/matrix products
— Associative

A-(B-C)=(A-B)-C
— Distributive
A-B+C)=A-B+A-C
— NOT commutative!!!
A-B=B-A

« left multiplications # right multiplications
— Transposition

(A-B) =B"-A"
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Determinant properties
« Associative for square matrices ‘A .B- C‘ — ‘A‘ . ‘B‘ . ‘C‘

— Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

* Volume of sum != sum of Volumes ‘(B +C)‘ #+ ‘B‘ + ‘C‘

* Commutative

— The order in which you scale the volume of an object is irrelevant

[A-B|=[B-A[=[A]B

5 Sep 2013
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Matrix Inversion

* A matrix transforms an
N-dimensional object to a
different N-dimensional
object

* What transforms the new
object back to the original?

— The inverse transformation

* The inverse transformation is
called the matrix inverse
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Revisiting Projections and Least Squares

* Projection computes a least squared error estimate
¢ For each vector V in the music spectrogram matrix
— Approximation: V,

pprox = @¥Notel + b*note2 + c*note3..

a
293
=555 Vipro=T| b
EIElE
c

— Errorvector E= V-V,

— Squared error energy for V. e(V) = norm(E)?

* Projection computes V,
minimized
¢ But WHAT ARE “a@” “b” and “c”?

pprox fOF all vectors such that Total error is

MLSH
Matrix Inversion
T T
e N =
& 4 y s &
T*T*D=D = T'T=1
* The product of a matrix and its inverse is the
identity matrix
— Transforming an object, and then inverse
transforming it gives us back the original object
TT"D=Da>TT'=I
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Inverting rank-deficient matrice
| ~ e
) T 0
0 25 0433
0 —0433 075
« Rank deficient matrices “flatten” objects
— In the process, multiple points in the original object get mapped to the same
point in the transformed object
* Itis not possible to go “back” from the flattened object to the original
object
— Because of the many-to-one forward mapping
* Rank deficient matrices have no inverse
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The Pseudo Inverse (PINV)
Voo=T|b| EE) V=T|b| EE) | b|=PINV(T)*V
c c c

* We are approximating spectral vectors V as the
transformation of the vector [a b c]T

— Note —we’re viewing the collection of bases in T as a
transformation

¢ The solution is obtained using the pseudo inverse
— This give us a LEAST SQUARES solution
* If T were square and invertible Pinv(T) = T, and V=V,
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e
Explaining music with one note

Recap: P =W (W'™W)1 W" Projected Spectrogram = P*M

Approximation: M = W*X
The amount of W in each vector = X = PINV(W)*M

W*Pinv(W)*M = Projected Spectrogram _ pr—
o W*Pinv(W) = Projection matrix!! FISAE) = @Y
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Explanation with multiple notes

Mo~ N . | X=PINVW)M
. o e . S
oM a S
Xt R D]

|
Lullinl

[T

= X = Pinv(W)*M; Projected matrix = W*X = W*Pinv(W)*M
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Matrix inversion (division)

* The inverse of matrix multiplication
— Not element-wise division!!
* Provides a way to “undo” a linear transformation
— Inverse of the unit matrix is itself
— Inverse of a diagonal is diagonal
— Inverse of a rotation is a (counter)rotation (its transpose!)
— Inverse of a rank deficient matrix does not exist!
* But pseudoinverse exists
* For square matrices: Pay attention to multiplication side!

A-B=C, A=C-B"', B=A"'-C

 If matrix is not square use a matrix pseudoinverse:
A-B=~C, A=C-B", B=A"-C

* MATLAB syntax: inv(a), pinv(a)
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Eigenanalysis

* If something can go through a process mostly
unscathed in character it is an eigen-something
— Sound example: @ @ @ @
* A vector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector
— Its length can change though
* How much its length changes is expressed by its
corresponding eigenvalue
— Each eigenvector of a matrix has its eigenvalue
* Finding these “eigenthings” is called eigenanalysis
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ut the other way?
M=
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MLSH

Pseudo-inverse (PINV)

* Pinv() applies to non-square matrices
* Pinv ( Pinv (A))) = A
* A*Pinv(A)= projection matrix!

— Projection onto the columns of A

* If A=Kx N matrixand K > N, A projects N-D vectors
into a higher-dimensional K-D space
— Pinv(A) = NxK matrix
— Pinv(A)*A = | in this case

EigenVectors and EigenValues

Black

vectors | M= [,1(')?7 _1(_)()7]
are ~
eigen .
vectors |

* Vectors that do not change angle upon
transformation
— They may change length

MV =V

— V =eigen vector

. — A =eigenvalue




Eigen vector example

5 Sep 2013

A stretching operation

= Draw two lines

= Stretch / shrink the paper along these lines by factors A,
and A,

0 The factors could be negative — implies flipping the paper
= The result is a transformation of the space
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Matrix multiplication revisited

1.0 -0.07

A=
o2 \J

* Matrix transformation “transforms” the space

— Warps the paper so that the normals to the two
vectors now lie along the axes

5 Sep 2013
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Physical interpretation of eigen vector

¢ The result of the stretching is exactly the same as transformation by a
matrix

* The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix
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A stretching operation

i3

¢ Draw two 1ines

« Stretch / shrink the paper along these lines by factors A,
and A,

— The factors could be negative — implies flipping the paper
¢ The result is a transformation of the space
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Physical interpretation of eigen vector

v=[v, 7]
_[4 0
A5 2]
M =VAV™

¢ The result of the stretching is exactly the same as transformation by a
matrix

* The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix




Eigen Analysis

* Not all square matrices have nice eigen values and
vectors

— E.g. consider a rotation matrix

cos@ —sin
R,=|
sin@  cosd

L]

— This rotates every vector in the plane
* No vector that remains unchanged

* In these cases the Eigen vectors and values are complex
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Singular Value Decomposition

o
= D

* Matrix transformations convert circles to ellipses

« Eigen vectors are vectors that do not change direction in the
process

* There is another key feature of the ellipse to the left that carries
information about the transform
— Can you identify it?
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Singular Value Decomposition

1.0 —0.07}

: ’? T

¢ The major and minor axes of the transformed ellipse
define the ellipse
— They are at right angles
¢ These are transformations of right-angled vectors on
the original circle!
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Singular Value Decomposition

w81y A{ L0 70.07} .

’? U, ~Ll 12 v, A
i A=USVT K {
\ matlab:
- [U,SV]=svd(A)

¢ UandVare orthonormal matrices
— Columns are orthonormal vectors
« Sis adiagonal matrix
* The right singular vectors in V are transformed to the left singular vectors
inU
— And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

* The left and right singular vectors are not the same

— If Ais not a square matrix, the left and right singular vectors will
be of different dimensions

¢ The singular values are always real

¢ The largest singular value is the largest amount by which a
vector is scaled by A
— Max (|AX| / [X]) = Smax

¢ The smallest singular value is the smallest amount by which
a vector is scaled by A
= Min (|Ax] / |x]) ='s
— This can be 0 (for low-rank or non-square matrices)

'min
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The Singular Values

25 3 s 4 oof 0 o5 1 otg 3 2

* Square matrices: product of singular values = determinant of the matrix
— This is also the product of the eigen values

— lLe. there are two different sets of axes whose products give you the area of
an ellipse

* For any “broad” rectangular matrix A, the largest singular value of any
square submatrix B cannot be larger than the largest singular value of A
— An analogous rule applies to the smallest singular value
— This property is utilized in various problems, such as compressive sensing




SVD vs. Eigen Analysis

31U1)
NN

Eigen analysis of a matrix A:

— Find two vectors such that their absolute directions are not changed by the
transform

SVD of a matrix A:

— Find two vectors such that the angle between them is not changed by the
transform

For one class of matrices, these two operations are the same
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A matrix vs. its transpose

A:[’.(Zvl ﬂ £ >Ar<
A )

¢ Multiplication by matrix A:

— Transforms right singular vectors in V to left singular
vectors U

* Multiplication by its transpose AT:

— Transforms left singular vectors U to right singular vector V
* AA" : Converts V to U, then brings it back to V

— Result: Only scaling
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Symmetric Matrices

1.5 -07
-0.7 1

* Matrices that do not change on transposition
— Row and column vectors are identical
* The left and right singular vectors are identical
- U=V
— A=USUT
* They are identical to the Eigen vectors of the matrix
* Symmetric matrices do not rotate the space
— Only scaling and, if Eigen values are negative, reflection
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Symmetric Matrices

1.5 -07
-0.7 1

¢ Matrices that do not change on transposition
— Row and column vectors are identical

* Symmetric matrix: Eigen vectors and Eigen values are
always real

* Eigen vectors are always orthogonal
— At 90 degrees to one another
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Symmetric Matrices

1.5 =07
-0.7 1

* Eigen vectors point in the direction of the
major and minor axes of the ellipsoid resulting
from the transformation of a spheroid
— The eigen values are the lengths of the axes
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Symmetric matrices

* Eigen vectors V, are orthonormal

- VTV, =1
- Viij =0,il=j
« Listing all eigen vectors in matrix form V
_ VT: \/—1
—Viv=1]
- VVi=]
© MV,=LV;

¢ Inmatrixform : MV =V A
— Ais a diagonal matrix with all eigen values

* M=VAVT

11-755/18-797 8
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Square root of a symmetric matrix

C=VAV"
Sqrt(C) =V .Sqrt(A) V"
Sqrt(C).Sqrt(C) =V .Sqrt(AN) VTV .Sqrt(A) V"
=V .Sqrt(A).Sqrt(AWT =VAV™ =C

The square root of a symmetric matrix is easily
derived from the Eigen vectors and Eigen values
— The Eigen values of the square root of the matrix are the
square roots of the Eigen values of the matrix

— For correlation matrices, these are also the “singular
values” of the data set

Definiteness..

* SVD: Singular values are always positive!

* Eigen Analysis: Eigen values can be real or imaginary

— Real, positive Eigen values represent stretching of the space along
the Eigen vector

— Real, negative Eigen values represent stretching and reflection
(across origin) of Eigen vector

— Complex Eigen values occur in conjugate pairs

* Asquare (symmetric) matrix is positive definite if all Eigen
values are real and positive, and are greater than 0
— Transformation can be explained as stretching and rotation
— If any Eigen value is zero, the matrix is positive semi-definite

Positive Definiteness..

Property of a positive definite matrix: Defines
inner product norms

—xTAx is always positive for any vector x if A is
positive definite

* Positive definiteness is a test for validity of
Gram matrices
— Such as correlation and covariance matrices

— We will encounter other gram matrices later

The Correlation and Covariance Matrices
A AT

Consider a set of column vectors ordered as a DxN matrix A
The correlation matrix is
— C=(1/N) AAT

« If the average (mean) of the vectors in Ais subtracted out of all vectors,
Cis the covariance matrix

* covariance = correlation + mean * mean’

* Diagonal elements represent average of the squared value of
each dimension

— Off diagonal elements represent how two components are related

* How much knowing one lets us guess the value of the other
5 Sep 2013 11-755/18-797
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Square root of the Covariance Matrix

* The square root of the covariance matrix
represents the elliptical scatter of the data

* The Eigenvectors of the matrix represent the
major and minor axes
— “Modes” in direction of scatter
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The Correlation Matrix

Any vector V = a, ; * eigenvecl + a,,, *eigenvec2 + ..

Iy ay; = eigenvalue(i)

* Projections along the N Eigen
vectors with the largest Eigen
values represent the N greatest
“energy-carrying” components of the matrix

* Conversely, N “bases” that result in the least square
error are the N best Eigen vectors




An audio example

* The spectrogram has 974 vectors of dimension
1025

* The covariance matrix is size 1025 x 1025
* There are 1025 eigenvectors
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Eigen Reduction

M = spectrogram ~ 1025x1000
C=M.M" |[1025x1025
V =1025x1025 v,L]1= eig(C)
Veawcea =i+ - Vs 1025x25
M i = Pinv(V .0 )M  125%1000
M, consmctea = Vseauced™ iowaim1025%1000

* Compute the Correlation
* Compute Eigen vectors and values

* Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen
values

* Compute the weights of the 25 eigenvectors
* To reconstruct the spectrogram — compute the projection on the 25 Eigen
vectors
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Eigenvalues and Eigenvectors

I] gt Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 ...

¢ The vectors in the spectrogram are linear combinations of all
1025 Eigen vectors
* The Eigen vectors with low Eigen values contribute very little

— The average value of a; is proportional to the square root of the
Eigenvalue

— Ignoring these will not affect the composition of the spectrogram

Eigenvalues and Eigenvectors

M = spectrogram
* Left panel: Matrix with 1025 eigen vectors C=MM"
* Right panel: Corresponding eigen values [V,L]=eig(C)
— Most Eigen values are close to zero

* The corresponding eigenvectors are “unimportant”
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An audio example
V,wmd :[Vl s V25]
M, i = Pinv(V s M

= =y w
|
|
|

o

* The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values
— Only the 25-dimensional weights are shown

* The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram
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o0 example

M

M

lowdim

reconstructed Vrmlme(l

¢ The same spectrogram constructed from only the 25
Eigen vectors with the highest Eigen values
— Looks similar
+ With 100 Eigenvectors, it would be indistinguishable from the original
— Sounds pretty close

— But now sufficient to store 25 numbers per vector (instead of
1024)

5 Sep 2013 1-755/18-797
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* The same spectrogram constructed from only
the 5 Eigen vectors with the highest Eigen
values

— Highly recognizable
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SVD vs. Eigen decomposition

 Singular value decomposition is analogous to the Eigen
decomposition of the correlation matrix of the data
—SVD: D=USVT
- DD'= USVTVSUT =US2UT

e The “left” singular vectors are the Eigen vectors of the
correlation matrix

— Show the directions of greatest importance

* The corresponding singular values are the square roots of
the Eigen values of the correlation matrix
— Show the importance of the Eigen vector

Correlation vs. Covariance Matrix

* Correlation:
— The N Eigen vectors with the largest Eigen values represent the
N greatest “energy-carrying” components of the matrix

— Conversely, N “bases” that result in the least square error are
the N best Eigen vectors

* Projections onto these Eigen vectors retain the most energy

¢ Covariance:

— the N Eigen vectors with the largest Eigen values represent the
N greatest “variance-carrying” components of the matrix

— Conversely, N “bases” that retain the maximum possible
variance are the N best Eigen vectors
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Eigenvectors, Eigenvalues and
Covariances/Correlations

* The eigenvectors and eigenvalues (singular
values) derived from the correlation matrix
are important

* Do we need to actually compute the
correlation matrix?

—No

* Direct computation using Singular Value

Decomposition
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Thin SVD, compact SVD, reduced SVD
NxM NxN MxM
A U vr

NxM
- =INE

¢ SVD can be computed much more efficiently than Eigen
decomposition

¢ Thin SVD: Only compute the first N columns of U
— Allthat is required if N < M

¢ Compact SVD: Only the left and right singular vectors corresponding to
non-zero singular values are computed
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Why bother with Eigens/SVD

¢ Can provide a unique insight into data
— Strong statistical grounding
— Can display complex interactions
between the data
— Can uncover irrelevant parts of the
data we can throw out
* Can provide basis functions
— Aset of elements to compactly
describe our data
— Indispensable for performing
compression and classification
« Used over and over and still perform Usi ’I?-"ge”fi’cesf :
: sing a linear transform of
amazingly well the above “eigenvectors” we
can compose various faces
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Trace

[Gn) G Gy ay Tr(A)=a, +ay, +a, +ay,

ay Ay aaé‘ A3y Tr(A):Z“.J
PN -

* The trace of a matrix is the sum of the
diagonal entries

* |tis equal to the sum of the Eigen values!

Tr(d)=3a,=>4
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Decompositions of matrices

Square A: LU decomposition
— DecomposeA =LU =
— Lis a lower triangular matrix

* All elements above diagonal are 0
— Ris an upper triangular matrix

« All elements below diagonal are zero
— Cholesky decomposition: A is symmetric, L = UT
— Ris upper triangular

Generally used as tools to I . |]

compute Eigen decomposition or least square solutions

* QR decompositions: A=QR
— Qis orthgonal: QQ" =1
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Trace

* Often appears in Error formulae

du dlz dlz dM i S Gz Cy
D= dy dy dy dy Cc= G Cn Gy Cy
dy ay ay ay G Cp Gy Cy
d, dy, ds dy Ca Cn Cy Cuy
error = Z E? T

E=D-C i error =Tr(EE")

ij

» Useful to know some properties..
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Making vectors and matrices in MATLAB

¢ Make a row vector:

a=[12 3]
Make a column vector:
a = [1;2;3]

*  Make a matrix:
A= [12 3;45 6]
Combine vectors
A = [b c] or A = [b;c]
Make a random vector/matrix:
r = rand(m,n)
* Make an identity matrix:
I = eye(n)
Make a sequence of numbers
c = 1:10o0rc = 1:0.5:100rc = 100:-2:50
¢ Make aramp
c = linspace( 0, 1, 100)

Properties of a Trace

* Linearity: Tr(A+B)=Tr(A) + Tr(B)
Tr(c.A) = c.Tr(A)

* Cycling invariance:
— Tr (ABCD) = Tr(DABC) = Tr{(CDAB) =
Tr(BCDA)
— Tr(AB) = Tr(BA)
* Frobenius norm F(A) = %;;3;* = Tr(AAT)
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Indexing

¢ To get the i-th element of a vector

a(i)
* To get the j-th j-th element of a matrix

A(i,3)
* To get from the i-th to the j-th element

a(i:j)

* To get a sub-matrix
A(i:j,k:1)

* To get segments
a([i:j k:1 m])
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Arithmetic operations

* Addition/subtraction
C=A+BorC=A-B
* Vector/Matrix multiplication
C=A*B
— Operant sizes must match!
* Element-wise operations
— Multiplication/division
C=A.*BorC=A./B
— Exponentiation
C=A."B
— Elementary functions
C = sin(A) orC = sqgrt(A), ..

Linear algebra operations

* Transposition

C =14’

— If Ais complex also conjugates use C
¢ Vector norm

norm (x) (also works on matrices)
¢ Matrix inversion

C = inv (A) if Ais square

C = pinv (A) if Ais not square

— A might not be invertible, you'll get a warning if so
* Eigenanalysis

[u,d] = eig(A)

— u is a matrix containing the eigenvectors

— dis a diagonal matrix containing the eigenvalues
* Singular Value Decomposition

[u,s,v] = svd(A)or[u,s,v] = svd(A,0)

— “thin” versus regular SVD

— s isdiagonal and contains the singular values

A.’ toavoid that
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Plotting functions

¢ 1-d plots
plot (x)
« if x is a vector will plot all its elements
 If x is a matrix will plot all its column

08
vectors 08
bar (x) o
« Ditto but makes a bar plot 0 23T s78810
e 2-d plots

imagesc (x)

« plots a matrix as an image
surf (x)

* makes a surface plot

5 Sep 2013 11-755/18-797

Getting help with functions

* The help function

— Type help followed by a function name
¢ Things to try

help help

help +

help eig

help svd

help plot

help bar

help imagesc

help surf

help ops

help matfun
* Also check out the tutorials and the mathworks site
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