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Matrix Identities 

• The derivative of a scalar function w.r.t. a 
vector is a vector 
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Matrix Identities 

• The derivative of a scalar function w.r.t. a 
vector is a vector 

• The derivative w.r.t. a matrix is a matrix 
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Matrix Identities 

• The derivative of a vector function w.r.t. a 
vector is a matrix 

– Note transposition of order 
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Derivatives 

• In general:  Differentiating an MxN function by 
a UxV argument results in an MxNxVxU tensor 
derivative 

11755/18797 5 

, 

Nx1 

UxV 

NxVxU 

, 
Nx1 UxV 

UxVxN 



Matrix derivative identities 

• Some basic linear and quadratic identities 
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aXXaaXXa dddd TT  )(      )(
X is a matrix, a is a vector.   

Solution may also be XT 

)()(   ;  )()( AXXAXAAX dddd  A is a matrix 

    aXXaXaa dd TTT 

         AXXXAAXAAXAA dtracedtracedtraced TTTT )( 



A Common Problem 

• Can you spot the glitches? 
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How to fix this problem? 

• “Glitches” in audio 
– Must be detected 
– How? 

 

• Then what? 
 

• Glitches must be “fixed” 
– Delete the glitch 

• Results in a “hole” 

– Fill in the hole 
– How? 
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Interpolation.. 

• “Extend” the curve on the left to “predict” the values in the 
“blank” region 

– Forward prediction 

• Extend the blue curve on the right leftwards to predict the 
blank region 

– Backward prediction 

• How? 

– Regression analysis.. 



Detecting the Glitch 

• Regression-based reconstruction can be done 
anywhere 

• Reconstructed value will not match actual value 

• Large error of reconstruction identifies glitches 

11755/18797 10 

NOT OK OK 



What is a regression 

• Analyzing relationship between variables 

• Expressed in many forms 

• Wikipedia 
– Linear regression,  Simple regression, Ordinary 

least squares, Polynomial regression,  General 
linear model, Generalized linear model,  Discrete 
choice, Logistic regression,  Multinomial logit, 
Mixed logit,  Probit,  Multinomial probit, …. 

 

• Generally a tool to predict variables 

11755/18797 11 



Regressions for prediction 

• y = f(x; Q) + e 

• Different possibilities 
– y is a scalar 

• y is real 
• y is categorical (classification) 

– y is a vector 
– x is a vector 

• x is a set of real valued variables 
• x is a set of categorical variables 
• x is a combination of the two  

– f(.) is a linear or affine function 
– f(.) is a non-linear function 
– f(.) is a time-series model 
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A linear regression 

• Assumption: relationship between variables is linear 
– A linear trend may be found relating x and y 

– y = dependent variable 

– x = explanatory variable 

– Given x, y can be predicted as an affine function of x 
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An imaginary regression.. 

• http://pages.cs.wisc.edu/~kovar/hall.html 

•  Check this shit out (Fig. 1).  
That's bonafide, 100%-real data,  
my friends. I took it myself over the  
course of two weeks. And this was not  
a leisurely two weeks, either; I busted  
my ass day and night in order to provide  
you with nothing but the best data  
possible. Now, let's look a bit more  
closely at this data, remembering  
that it is absolutely first-rate. Do you see the exponential dependence? I sure 
don't. I see a bunch of crap. 
      Christ, this was such a waste of my time.  
      Banking on my hopes that whoever grades this will just look at the pictures, I 
drew an exponential through my noise. I believe the apparent legitimacy is 
enhanced by the fact that I used a complicated computer program to make the fit. 
I understand this is the same process by which the top quark was discovered. 
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Linear Regressions 

• y = Ax + b + e 
– e = prediction error 

 

• Given a “training” set of {x, y} values: estimate A 
and b 
– y1 = Ax1 + b + e1 

– y2 = Ax2 + b + e2 

– y3 = Ax3 + b+ e3 

– … 

• If A and b are well estimated, prediction error will 
be small 
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Linear Regression to a scalar 

• Rewrite 
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 Define: 

eXAy  T

y1 = aTx1 + b + e1 

y2 = aTx2 + b + e2 

y3 = aTx3 + b + e3 



Learning the parameters 

• Given training data:  several x,y  

• Can define a “divergence”:   D(y,  ) 

– Measures how much      differs from y 

– Ideally, if the model is accurate this should be small 

• Estimate A, b to minimize D(y,  ) 
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The prediction error as divergence 

• Define divergence as sum of the squared error in predicting y 
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Prediction error as divergence 

• y = aTx + e 

– e = prediction error 

– Find the “slope” a such that the total squared 
length of the error lines is minimized 
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Solving a linear regression 

• Minimize squared error 
 

 
 

• Differentiating  w.r.t  A and equating to 0 
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Regression in multiple dimensions 

• Also called multiple regression 

• Equivalent of saying: 

 

 

• Fundamentally no different from N separate single 
regressions 

– But we can use the relationship between ys to our benefit 
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y1 = ATx1 + b + e1 

y2 = ATx2 + b + e2 

y3 = ATx3 + b + e3 

yi is a vector 

yi = ATxi + b + ei 

yi1 = a1
Txi + b1 + ei1 

yi2 = a2
Txi + b2 + ei2 

yi3 = a3
Txi + b3 + ei3 

yij = jth component of vector yi 

ai = ith column of A 

bj = jth component of  b 



Multiple Regression 

• Differentiating and equating to 0 
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A Different Perspective 

• y is a noisy reading  of ATx 
 
 

• Error e is Gaussian 
 
 

• Estimate A from  
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The Likelihood of the data 

• Probability of observing a specific y, given x, 
for a particular matrix A 

 

 

• Probability of collection: 

 

 

• Assuming IID for convenience (not necessary) 
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A Maximum Likelihood Estimate 

• Maximizing the log probability is identical to 
minimizing the trace 

– Identical to the least squares solution 
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Predicting an output 

• From a collection of training data, have 
learned A 

• Given x for a new instance, but not y, what is 
y? 

• Simple solution: 
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Applying it to our problem 

• Prediction by regression 

 

• Forward regression 

• xt = a1xt-1+ a2xt-2…akxt-k+et 

 

• Backward regression 

• xt = b1xt+1+ b2xt+2…bkxt+k +et 
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Applying it to our problem 

• Forward prediction 
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Applying it to our problem 

• Backward prediction 
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Finding the burst 

• At each time 

– Learn a “forward” predictor  at 

– At each time, predict next sample  xt
est = Si at,kxt-k 

– Compute error:  ferrt=|xt-xt
est |2 

– Learn a “backward” predict and compute backward error 

• berrt  

– Compute average prediction error over window, 
threshold 
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Filling the hole 

• Learn “forward” predictor at left edge of “hole” 

– For each missing sample 

– At each time, predict next sample  xt
est = Si at,kxt-k 

• Use estimated samples  if real samples are not available 

• Learn “backward” predictor at left edge of “hole” 

– For each missing sample 

– At each time, predict next sample  xt
est = Si bt,kxt+k 

• Use estimated samples  if real samples are not available 

• Average forward and backward predictions 
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Reconstruction zoom in 
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Incrementally learning the regression 

• Can we learn A incrementally instead? 
– As data comes in? 

 

• The Widrow Hoff rule 
 

 

• Note the structure 
– Can also be done in batch mode! 
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Requires knowledge of 

all  (x,y) pairs 
   TT
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
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error 

Scalar prediction version 



Predicting a value 

• What are we doing exactly? 
– For the explanation we are assuming no “b” (X is 0 mean) 
– Explanation generalizes easily even otherwise  
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Predicting a value 

• What are we doing exactly? 
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Predicting a value 

• Given training instances (xi,yi) for i = 1..N, estimate y 

for a new test instance of x with unknown y : 

• y is simply a weighted sum of the yi instances from the 

training data 

• The weight of any yi is simply the inner product 

between its corresponding xi and the new x 

– With due whitening and scaling.. 
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What are we doing: A different 
perspective 

• Assumes XXT is invertible 

• What if it is not 

– Dimensionality of X is greater than number of 
observations? 

– Underdetermined 

• In this case XTX will generally be invertible 
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High-dimensional regression 

• XTX is the “Gram Matrix” 
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High-dimensional regression 

• Normalize Y by the inverse of the gram matrix 
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Linear Regression in High-dimensional 
Spaces 

• Given training instances (xi,yi) for i = 1..N, estimate y 

for a new test instance of x with unknown y : 

• y is simply a weighted sum of the normalized  yi 

instances from the training data 

– The normalization is done via the Gram Matrix 

• The weight of any yi is simply the inner product 

between its corresponding xi and the new x 
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Relationships are not always linear 

• How do we model these? 

• Multiple solutions 
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Non-linear regression 

• y = Aj(x)+e 
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 Y = A(X)+e 
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Problem 
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 Y = A(X)+e 

 Replace X with (X) in earlier 
 equations for solution 

 

 

 (X) may be in a very high-dimensional space 

 The high-dimensional space (or the transform 
(X)) may be unknown.. 
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The regression is in high dimensions 

• Linear regression: 

 

• High-dimensional regression 
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Doing it with Kernels 

• High-dimensional regression with Kernels: 

 

 

 

 

• Regression in Kernel Hilbert Space.. 
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A different way of finding nonlinear 
relationships: Locally linear regression 

• Previous discussion: Regression parameters are 
optimized over the entire training set 

• Minimize 

 

 

• Single global regression is estimated and applied to all 
future x 

• Alternative: Local regression 

• Learn a regression that is specific to x 
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Being non-committal: Local 
Regression 

• Estimate the regression to 
be applied to any x using  
training instances near x 

 

 

 

• The resultant regression has the form 

 

 

 

– Note : this regression is specific to x 

• A separate regression must be learned for every x 
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Local Regression 

• But what is d()? 

– For linear regression d() is an inner product 

• More generic form:  Choose d() as a function of the 
distance between x and xj 

• If d() falls off rapidly with |x and xj| the 
“neighbhorhood” requirement can be relaxed 
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Kernel Regression: d() = K() 

• Typical Kernel functions:  Gaussian, Laplacian, other 

density functions 

– Must fall off rapidly with increasing distance between x 

and xj 

• Regression is local to every x :  Local regression 

• Actually a non-parametric MAP estimator of y 

– But first.. MAP estimators.. 49 
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Map Estimators 

• MAP (Maximum A Posteriori): Find a “best 
guess” for y (statistically), given known x 
    y = argmax Y P(Y|x) 

 

• ML (Maximum Likelihood): Find that value of y 
for which the statistical best guess of x would 
have been the observed x 
    y = argmax Y P(x|Y) 

 

• MAP is simpler to visualize 
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MAP estimation: Gaussian PDF 
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F1 F0 

Assume X  

and Y are 

jointly  
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X Y 



Learning the parameters of the 
Gaussian 
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Learning the parameters of the 
Gaussian 
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MAP estimation: Gaussian PDF 
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MAP Estimator for Gaussian RV 
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Assume X  

and Y are 

jointly  

Gaussian 

The parameters  

of the Gaussian  

are learned from  

training data 

Now we are given an X, but no Y 

What is Y? 

Level set of 
Gaussian 

X0 



MAP estimator for Gaussian RV 
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MAP estimation: Gaussian PDF 
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F1 

MAP estimation: The Gaussian at a 
particular value of X 
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x0 



F1 

MAP estimation: The Gaussian at a 
particular value of X 
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MAP Estimation of a Gaussian RV 
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Y = argmaxy P(y| X) ??? 

 

x0 



MAP Estimation of a Gaussian RV 
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MAP Estimation of a Gaussian RV 
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x0 

Y = argmaxy P(y| X) 



So what is this value? 

• Clearly a line 

• Equation of Line: 
 

 

 

• Scalar version given; vector version is identical 

 

 

• Derivation?  Later in the program a bit 
– Note the similarity to regression 
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This is a multiple regression 

 

 

 

• This is the MAP estimate of y 

–  y = argmax Y P(Y|x) 
 

• What about the ML estimate of y 

– argmax Y P(x|Y) 
 

• Note: Neither of these may be the regression line! 

– MAP estimation of y is the regression on Y for Gaussian RVs 

– But this is not the MAP estimation of the regression parameter 
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Its also a minimum-mean-squared 
error estimate 

• General principle of MMSE estimation: 

– y is unknown, x is known 

– Must estimate it such that the expected squared 
error is minimized 

 

 

– Minimize above term 
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Its also a minimum-mean-squared 
error estimate 

• Minimize error: 

 

 

 

• Differentiating and equating to 0: 
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For the Gaussian: MAP = MMSE 
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   Would be true of any symmetric distribution 



MMSE estimates for mixture 
distributions 

68 

 Let P(y|x) be a mixture density 

 The MMSE estimate of y is given by 

 Just a weighted combination of the MMSE 
estimates from the component distributions  
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MMSE estimates from a Gaussian 
mixture 
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 P(y|x) is also a Gaussian mixture 

 Let P(x,y) be a Gaussian Mixture 
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MMSE estimates from a Gaussian 
mixture 
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MMSE estimates from a Gaussian 
mixture 
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 E[y|x] is also a mixture 

 P(y|x) is a mixture Gaussian density 
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MMSE estimates from a Gaussian 
mixture 
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 A mixture of estimates from individual Gaussians 



Voice Morphing 

• Align training recordings from both speakers 

– Cepstral vector sequence 

• Learn a GMM on joint vectors 

• Given speech from one speaker, find MMSE estimate of the other 

• Synthesize from cepstra 
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MMSE with GMM: Voice 
Transformation  

- Festvox GMM transformation suite (Toda)                

                       awb     bdl     jmk     slt 

            awb 

             bdl 

             jmk 

              slt 
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A problem with regressions 

• ML fit is sensitive 

– Error is squared 

– Small variations in data  large variations in weights 

– Outliers affect it adversely 

• Unstable 

– If dimension of X >= no. of instances 

• (XXT) is not invertible 
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MAP estimation of weights 

• Assume weights drawn from a Gaussian 
– P(a) =  N(0, 2I) 

• Max. Likelihood estimate 

 

• Maximum a posteriori estimate 
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MAP estimation of weights 

• Similar to ML estimate with an additional term 
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MAP estimate of weights 

• Equivalent to diagonal loading of correlation matrix 

– Improves condition number of correlation matrix 
• Can be inverted with greater stability 

– Will not affect the estimation from well-conditioned data 

– Also called Tikhonov Regularization  
• Dual form: Ridge regression 

• MAP estimate of weights 

– Not to be confused with MAP estimate of Y 
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MAP estimate priors 

• Left:  Gaussian Prior on W 

• Right:  Laplacian Prior 
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MAP estimation of weights with 
laplacian prior 

• Assume weights drawn from a Laplacian 
– P(a) =  l-1exp(-l-1|a|1) 

• Maximum a posteriori estimate 
 

 

 

• No closed form solution 
– Quadratic programming solution required 

• Non-trivial 
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MAP estimation of weights with 
laplacian prior 

• Assume weights drawn from a Laplacian 

– P(a) =  l-1exp(-l-1|a|1) 

• Maximum a posteriori estimate 

– … 

 

• Identical to L1 regularized least-squares 
estimation 
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L1-regularized LSE 

• No closed form solution 
– Quadratic programming solutions required 

 

• Dual formulation 

 

 

• “LASSO” – Least absolute shrinkage and 
selection operator 
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LASSO Algorithms 

• Various convex optimization algorithms 
 

• LARS: Least angle regression 

 

• Pathwise coordinate descent.. 

 

• Matlab code available from web 
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Regularized least squares 

• Regularization results in selection of suboptimal (in 
least-squares sense) solution 

– One of the loci outside center 

• Tikhonov regularization selects shortest solution 

• L1 regularization selects sparsest solution 
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LASSO and Compressive Sensing 

• Given Y and X, estimate sparse a 
• LASSO:    

– X = explanatory variable 
– Y = dependent variable 
– a = weights of regression 

• CS: 
– X = measurement matrix 
– Y = measurement 
– a = data 
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An interesting problem: Predicting 
War! 

• Economists measure a number of social 
indicators for countries weekly 
– Happiness index 

– Hunger index 

– Freedom index 

– Twitter records 

– … 
 

• Question: Will there be a revolution or war next 
week? 
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An interesting problem: Predicting 
War! 

• Issues: 
– Dissatisfaction builds up – not an instantaneous 

phenomenon 
• Usually 

– War / rebellion build up much faster 
• Often in hours 

 

• Important to predict 
– Preparedness for security 

– Economic impact 
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Predicting War 

Given 
– Sequence of economic indicators for each week 

– Sequence of unrest markers for each week 
• At the end of each week we know if war happened or not 

that week 

• Predict probability of unrest next week 
– This could be a new unrest or persistence of a current 

one 
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Predicting Time Series 

• Need time-series models 

 

• HMMs – later in the course 
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