MLSP

Machine Learning for Signal
Processing
Regression and Prediction

Class 16. 28 Oct 2014

Instructor: Bhiksha Raj
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Matrix Identitie_s

f(x)

X =

e The derivative of a scalar function w.r.t. a

vector is a vector
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Matrix Identities

af dx,, idx12 idx1D

_')§11 )<12 . )QHD ] d)&l d)&z y d)&E)

f(x) =x=|"21 %22 - M0 df () =| dax, 2 dx, 2,
X X . X . - Ny

| AD1 D2 DD _| df dx,. df dx. df b
_dXDl dXD2 dXDD

e The derivative of a scalar function w.r.t. a
vector is a vector

e The derivative w.r.t. a matrix is a matrix
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Matrix Identities

dF1 dx, dF, x, dF, X,

. _ CdE ] dx, dx, dx,

F X i sz dF, . - dF,
F X sz _ dX d dXD

F(X) F=|"2| x=|" dx, dx, dxg
P RN dFy dx, dFy dx, dFy dx,

| dx dx, dx,

* The derivative of a vector function w.r.t. a
vector is a matrix

— Note transposition of order
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Derivatives

UxV @ Nx1

UxVXN

* |n general: Differentiating an MxN function by
a UxV argument results in an MxNxVxU tensor
derivative
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Matrix derivative identities

X is a matrix, a is a vector.

d(Xa)=Xda d(@'X)=X'da Solution may also be XT

d(AX) = (dA)X ; d(XA)=X(dA) Aisamatrix

d(a"Xa)=a"(X+X" Jda

d (trace(AT XA)) d (trace(XAAT )): d (trace(AAT X)) = (X" +X)dA

* Some basic linear and quadratic identities
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A Common Problem
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* Can you spot the glitches? &)
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How to fix this problem?

e “Glitches” in audio
— Must be detected oo l

0.00! . ‘1 ‘WI

—_ HOW? M J"‘ljl Wy
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e Glitches must be “fixed” - l

— Delete the glitch

* Results in a “hole” ;; ) ;"\l | “
— Fill in the hole BRIk |V {.H"J L
— How?

00000
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Interpolation..

A

 “Extend” the curve on the left to “predict” the values in the
“blank” region

— Forward prediction

* Extend the blue curve on the right leftwards to predict the
blank region

— Backward prediction
* How?

— Regression analysis..
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Detecting the Glitch

“‘ ]i V“ g
\ {\ N
, > | ] |
Uy |,‘

OK / T NOTOK

* Regression-based reconstruction can be done
anywhere

* Reconstructed value will not match actual value
* Large error of reconstruction identifies glitches
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What is a regression

Analyzing relationship between variables

Expressed in many forms

Wikipedia

— Linear regression, Simple regression, Ordinary
least squares, Polynomial regression, General
linear model, Generalized linear model, Discrete

choice, Logistic regression, Multinomial logit,
Mixed logit, Probit, Multinomial probit, ....

Generally a tool to predict variables
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Regressions for prediction

c y=1(x;®) +e
* Different possibilities

— Y is a scalar
* yisreal
* Y is categorical (classification)

— Y is a vector

— X IS a vector
e X is a set of real valued variables
e X is a set of categorical variables
e X is a combination of the two

— 1(.) is a linear or affine function
— 1(.) is a non-linear function
— 1(.) is a time-series model

11755/18797
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A linear regression

15}

10F

20 10 10 20 30 40 50 60
X
* Assumption: relationship between variables is linear
— A linear trend may be found relating X and y
— Y = dependent variable
— X = explanatory variable
— Given X, Y can be predicted as an affine function of X

11755/18797
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An imaginary regression..

Resietvity ve. temperature

http://pages.cs.wisc.edu/~kovar/hall.html >~
1
Check this shit out (Fig. 1). 09 ——* +
. 3

That's bonafide, 100%-real data, . e N B
my friends. | took it myself over the 0 I <
course of two weeks. And this was not = 0 O PSS S
a leisurely two weeks, either; | busted . «
my ass day and night in order to provide Y 1 .
you with nothing but the best data 10 1w 200 280 5000 580
possible. Now, let's look a bit more o

closely at this data, remembering
that it is absolutely first-rate. Do you see the exponential dependence? | sure
don't. | see a bunch of crap.

Christ, this was such a waste of my time.

Banking on my hopes that whoever grades this will just look at the pictures, |
drew an exponential through my noise. | believe the apparent legitimacy is
enhanced by the fact that | used a complicated computer program to make the fit.
| understand this is the same process by which the top quark was discovered.
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Linear Regressions

. y=Ax+b+e o
— e = prediction error el

* Given a “training” set of {X, y} values: estimate A
and b
— Y1 =AX tDh+e
-VY,=AX,+Db+e,

— Y3 = AXy+ D+ e

* |If A and b are well estimated, prediction error will
be small
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Linear Regression to a scalar

— aT

y;=a'x; +b+e
— aT

Yo =aX, +h+e,
— aT

ys=a'Xz+b+e;

= Define:
y:[yl Y5 y3] | Xy Xy Xy A:|:aj|
X_[l 117 b
e=[ee,e,...]
e Rewrite

y=A"X+e
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Learning the parameters
y=A"X+e

y — AT X Assuming no error

------

* Given training data: several X,y

 Can define a “divergence”: D(y,y)
— Measures how much Yy differs fromy

— |deally, if the model is accurate this should be small

* Estimate A, b to minimize D(y,Y)
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The prediction error as divergence

— ATl
y,=a'x;+b+e
— ATl
Yo =aX, +h+e,
— ATl
Ys=a'X;+b+e,

y=A"X+e =y+e

D(y,y)=E=¢] +€; +€e +...
=(y,—a'x, —b)* +(y, —a'x, —b)* +(y, —a'x, —b)* +...

T 2
E=(y-A"X)y-A"X] =[y-ATX|
* Define divergence as sum of the squared error in predicting y
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Prediction error as divergence

a
»
sl
>l
1L
Sre
. .

o

e y=alx+e
— e = prediction error

— Find the “slope” a such that the total squared
length of the error lines is minimized

11755/18797
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Solving a linear regression
y=A"X+e

* Minimize squared error
E=ly-X'AlF=(y-A"X)(y-A"X)'
=yy' +A'XX'A-2yX'A

e Differentiating w.r.t A and equatingto O
dE = (2A"XX" - 2yX" JdA =0

AT =yX (XXT)" =ypinv(X)  A=(XX") Xy
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Regression in multiple dimensions

yi =A% +b+e y; IS a vector
— AT

y,=A'X, +b +e,

Y3 = ATXg +b+ €3 y;; = J™ component of vector y;

a; = i" column of A

* Also called multiple regression X b; = jt" component of b
2
Yip =a;'X + b + gy

. =a.'x.+b, +e.
=ATx. +b +e. :> Yio = ay X; ¥ D T €5
Y ! ! Yis = a3'X; + by + ;3

* Equivalent of saying:

 Fundamentally no different from N separate single
regressions

— But we can use the relationship between Ys to our benefit
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Multiple Regression

: X, X A
vt x[00] A
E=[e e, e,..]

Y=A"X+E

DIV = Z:Hyi ~A'X, 2 =trace((Y—ATX)(Y—ATX)T)

* Differentiating and equating to O
d.Div=—2(Y-ATXX"dA=0 YX = ATXX"

A

AT =YXT (XX )" =Ypinv(X) A=(XXT) XY’
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A Different Perspective

/+

10 : .
. _h
H . .
. Ten,” *ee *
o[ o .
M . . « " .
- [* = .t .
/. .. . /
.
-20 -10 10 20 30 40 50 60

* Yyisanoisy reading of A'X
y=A'X+e
* Erroreis Gaussian
e~ N(0,c°l)
e Estimate A from Y=[y1 Y2---y|\|] X:[Xl x2__,xN]
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The Likelihood of the data

y=A"'x+e e~ N(0,c?l)

* Probability of observing a specific y, given X,
for a particular matrix A

Py |x;A)=N(y;A'x,c°l)
* Probability of collection: Y=Iy, y,..yy1 X=[x X,..x,]
P(Y|X;A) =] [N(y;; A%, 0”1

|
e Assuming IID for convenience (not necessary)
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A Maximum Likelihood Estimate

y=A"x+e e"'N(O,O'Zl) Y =1y, Yo yn]l X=[X; X;..% ]

=

QRIS

0g P(Y X A)=C = |y, ~A'x,|
1
=C-2- trace((Y — ATX)(Y ~A"X)")

 Maximizing the log probability is identical to
minimizing the trace

— ldentical to the least squares solution

AT =YXT (XX )" =Ypinv(X) A=(XXT) XY’
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Predicting an output

15

10+ M
‘ -e ..-
. - .
-:" . * ...t
a
S IR T TR T T T B

* From a collection of training data, have
learned A

* Given X for a new instance, but noty, what is
y?
* Simple solution: Yy =A"X
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Applying it to our problem

Backward regression

00000
0

X¢ = b1Xt+1+ bZXt+2° . 'kat+k t
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Applying it to our problem

* Forward prediction

Xt
Xt -1

_XK+1_

Xt—l Xt—2
Xt—2 Xt—3

XK XK—l

X=Xa, +€

pinv(X)x =a,

P

| Jo] M

| lea M
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e Backward prediction

X k1 |
Xe_k_2

X

MLSP

Applying it to our problem

Xt Xt—l " Xt—K
Xt—l Xt—2 " Xt—K—l

X =Xb, +¢
pinv(X)X = b,

Mo
wofir| YA

)
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Finding the burst

'x l /
‘I ' 1
li

* At eachtime
— Learn a “forward” predictor a;
— At each time, predict next sample X'=Z; a;, X
— Compute error: ferr,=|X-X*" |2
— Learn a “backward” predict and compute backward error
* berr,

— Compute average prediction error over window,
threshold

11755/18797 30



Filling the hole

* Learn “forward” predictor at left edge of “hole”
— For each missing sample
— At each time, predict next sample X&'=Z; a; X,
* Use estimated samples if real samples are not available
* Learn “backward” predictor at left edge of “hole”
— For each missing sample
— At each time, predict next sample X&' =Z; by X
* Use estimated samples if real samples are not available
* Average forward and backward predictions

11755/18797
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Reconstruction zoom in

I I I I
Reconstruction area Next
glitch
0.02+ —
0.01} Distorted
signal
v v
f j
' i =
of * | ®
Recovered
signal
-0.01F —
|
|
l
j
-0.02} —
Interpolation \
result
Actual
-0.03F data —
| | | | | | | | | | |

7.04 7.05 7.06 7.07 7.08 7.09 7.1 7.11 7.12 7.13 7.14
4
x 10
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Incrementally learning the regression

-1
A = (XXT ) XY Requires knowledge of

all (x,y) pairs

 Can we learn A incrementally instead?
— As data comes in?

e The Widrow Hoff rule

Scalar prediction version
4l At ( A ) A _( t)T
a =a +1\Y; = Y X Yi=a ) X

e Note the structure = error
— Can also be done in batch mode!
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Predicting a value

A=(XT'XYT g =ATXx=YX(XX")'x

 What are we doing exactly?
— For the explanation we are assuming no “b” (X is 0 mean)
— Explanation generalizes easily even otherwise

C=XX'
1 1
mlet §=C 2x and x_c2x
= Whitening X
s NO>C0>js the whitening matrix for X
11 R
§=YX'C 2C 2x = YX'&
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Predicting a value

37 — YS(T)A( — Z)A(T)A(yu

=YX"%=Zly o ] =Yy, (&%)

 What are we doing exactly?
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Predicting a value

)A’:ZYi()A(iT)A()

 Given training instances (X;Y;) for 1 = 1..N, estimate y
for a new test instance of X with unknown y :

* yissimply a weighted sum of the y; instances from the
training data

* The weight of any y; is simply the inner product
between its corresponding X; and the new X

— With due whitening and scaling..
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What are we doing: A different
perspective

y=A'x=YX' (XXT )_1x

e Assumes XXT is invertible
e What ifitis not

— Dimensionality of X is greater than number of
observations?

— Underdetermined

* In this case XX will generally be invertible

A=XXX]'YT  §=Y(X"X) X"x

11755/18797
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High-dimensional regression
§=Y(X"X)" X"x

e XTX isthe “Gram Matrix”

X X, X X, .. XXy

XX XX, e XpXy
G= - . .
T T T

_Xle XNXZ XNXN_

V=YG "X'x

11755/18797
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High-dimensional regression

V=YG XX
 Normalize Y by the inverse of the gram matrix

Y=YG™

* Working our way down..

)A/:YXTX 9=ZiniX

11755/18797 39



Linear Regression in High-dimensional™"
Spaces

)A/:Zi:'y"iXiTX Y=VYG!

 Given training instances (X;Y;) for 1 = 1..N, estimate y
for a new test instance of X with unknown y :

* yissimply a weighted sum of the normalized 'y,
instances from the training data

— The normalization is done via the Gram Matrix

* The weight of any y; is simply the inner product
between its corresponding X; and the new X
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Relationships are not always linear

1.0 1.5

0.5

-0.5 0.0

-1.0

-1.5

0 20 40 60 80 100 120

e How do we model these?
* Multiple solutions
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Non-linear regression

* Y= Ap(x)+e
X—>0(X) =[4(¥) 9.4y ()] o/
X—>®d(X)=[0(x) ¢(X,)..0x)] - - -

Y = AD(X)+e
= Replace X with ®(X) in earlier equations for
solution

A =(@X)D(X)" | D(X)YT

11755/18797 42
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Problem

n Y = AD(X)+e
= Replace X with ®(X) in earlier
equations for solution

A =(@X)D(X)" ] D(X)Y

= ®(X) may be in a very high-dimensional space

= The high-dimensional space (or the transform
®(X)) may be unknown..
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The regression is in high dimensions

* Linear regression: Y = Z Y. XiTX Y=YG!

* High-dimensional regression

ok olx) ok ol) .. o) olk,)
DT D) D) 0c) . D) Dlx,)
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Doing it with Kernels

* High-dimensional regression with Kernels:

K(x,y) =®(x) &(y)

I K(X1’ Xl) K(Xy Xl)
K(X,,X) K(X,,%X,) ...

_K(X.;“Xl) K(x,;,xz)

K(Xl’XN)_
K(X;,Xy)

K650,

* Regression in Kernel Hilbert Space..

Y =YG™ y:ZYiK(Xi’X)

11755/18797
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A different way of finding nonlinear ™
relationships: Locally linear regression

* Previous discussion: Regression parameters are
optimized over the entire training set

* Minimize

)
_ T
[EE — ::E::“)/} - l‘)\ )(j - t)“ e
all i "1

* Single global regression is estimated and applied to al
future X
e Alternative: Local regression

* Learn a regression that is specific to X

11755/18797 46



Being non-committal: Local —

Regression

* Estimate the regression to
be applied to any X using
training instances near X

) e

X jeneighborhod(x)

* The resultant regression has the form

y = > d(x,X;)y; +e

X jeneighborhod(x)

— Note : this regression is specific to X
* A separate regression must be learned for every X

11755/18797 47



Local Regression

y = D> d(x,X;)y; +e

X jeneighborhod(x)

But what is d()?

— For linear regression d() is an inner product

More generic form: Choose d() as a function of the
distance between X and X;

If d() falls off rapidly with [x and x;| the
“neighbhorhood” requirement can be relaxed

y=>d(xX,)y; +e

all

11755/18797
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Kernel Regression: d() = K()

ZKh(X_Xi)Yi
g =

ZKh(X_Xi)

* Typical Kernel functions: Gaussian, Laplacian, other
density functions

— Must fall off rapidly with increasing distance between X
and X;

* Regression is local to every X : Local regression

* Actually a non-parametric MAP estimator of y
— But first.. MAP estimators: isse;

49
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Map Estimators

* MAP (Maximum A Posteriori): Find a “best

guess” for y (statistically), given known X
y = argmax y P(Y|x)

* ML (Maximum Likelihood): Find that value of y
for which the statistical best guess of X would

have been the observed X
y = argmax y P(x|Y)

* MAP is simpler to visualize



MLSP

MAP estimation: Gaussian PDF

Assume X
and Y are
jointly

Gaussian 0.25 -

The parameters of the Y
Gaussian are learned fron wraining
data

11755/18797 o1



Learning the parameters of the

Gaussian
z=|Y
_X_

11755/18797 o
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Learning the parameters of the

~Gaussian
1 N L= 2/( 1 N
=2t Co=T -z p)
i=1 =1
|y c _[Cx Cx
e Hy * |G Cy
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MAP estimation: Gaussian PDF

Assume X
and Y are
jointly

Gaussian 0.25 -

The parameters of the Y
Gaussian are learned fron wraining
data y .

11755/18797 54



MLSP

MAP Estimator for Gaussian RV

Assume X
and Y are
jointly
Gaussian

The parameters
of the Gaussian ™
are learned from
training data

3

2.5

2

1.5

1

0.5+

a

-0.5

-1 L
-1.58

Level set of

Gaussian
|

[

-0.5 a

Now we are given an X, butno Y

What is Y?

11755/18797

55



MLSP
MAP estimator for Gaussian RV

7

1 1 | 1 1 i 1 | 1
15 -1 -0.5 a 0.5 1 1.5 2 2.5 3 3.4
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MAP estimation: Gaussian PDF

11755/18797 57
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MAP estimation: The Gaussian at a
particular value of X

11755/18797 58



MAP estimation: The Gaussian ata

particular value of X

025

02
015
] =
Most likely =< IIREEE
o 014+
value
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MAP Estimation of a Gaussian RV

Y = argmax, P(y| X) 7?7
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MAP Estimation of a Gaussian RV

1 | 1 1 i 1 | 1
15 -1 -0.5 a 0.5 1 1.5 2 2.5 3 3.4
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MAP Estimation of a Gaussian RV

Y = argmax, P(y| X)

25

1.5F

.
0sf /
0 ] ¢

Pt
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So what is this value?

Clearly a line

Equation of Line: %

/
-

Yy = i "'CYxC)_()l( (X_/Ux)

MLSP

Scalar version given; vector version is identical

Y = 1, +CYXC)_O1( (X_/Ux)

Derivation? Later in the program a bit
— Note the similarity to regression

11755/18797
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This is a multiple regression

Y = i, +CYXC)_()1( (X_qu)

* This is the MAP estimate of y ]
— y =argmax y P(Y|x) //

(=g

b ]
) \

=

o ]
| \ ]
ra

b

o J
wl d
L“J_

m

* What about the ML estimate of y
— argmax , P(x]Y)

* Note: Neither of these may be the regression line!
— MAP estimation of y is the regression on Y for Gaussian RVs
— But this is not the MAP estimation of the regression parameter

11755/18797
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Its also @ minimum-mean-squared ™
error estimate

* General principle of MMSE estimation:
— VY is unknown, X is known

— Must estimate it such that the expected squared
error is minimized

Err = Efly -] ]

— Minimize above term
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Its also a minimum-mean-squared "™
error estimate

* Minimize error:

Err =E[ly -9 |xI=Elly-¥) (y-9)|x]

Err=E[y'y+y'y-29"y IXI=E[lY'y|X]+¥" 9 - 29 E[y | X]

* Differentiating and equating to O:
d.Err =2y'dy —2E[y|x]' dy =0

o2 E The MMSE estimate is the
y — y X mean of the distribution
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For the Gaussian: MAP = MMSE

025

02
s
. =
Most likely =< T
value
is also
The MEAN
value

= Would be true of any symmetric distribution
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MLSE

MMSE estimates for mixture
distributions

Py ) =2 P(K)P(y|k,x)

= Let P(Y|X) be a mixture density
s The MMSE estimate of y is given by

Ely [X]= [y P(R)P(y |k, X)dy =3 P(k)[yP(y |k, x)dy

=2 P(K)ELy k,X]

= Just a weighted combination of the MMSE
estimates from the component distributions

68



MMSE estimates from a Gaussian

mixture

= Let P(X,y) be a Gaussian Mixture

=

P(x,y) =P(z) => P()N(zZ; 4, %)

= P(y|x) is also a Gaussian mixture

MLSP

P(y | X) =

P(xy) Zk', Ploxy) Zk: P(X)P(K | X)P(y |, k)

P(x)

P(X) P(x)

P(y )= 2 PIX)P(y|xk)

11755/18797
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MMSE estimates from a Gaussian

mixture

= Let P(Y|X) is a Gaussian Mixture
P(y|x) =2 P(k|x)P(y|xk)
k

C
Py, x k) =N(Ly; X];[ﬂk,y;uk,x],{ck’yy

k,Xy

Ck,yx
o

kXX

P(y | X, k) =N (y’ /uk,y + Ck,yka_i(x(X_/uk,x)’ ®)

Py [X) =D P(KIXIN(Y; £y +CiyCrox (X = £ 1), ©)
K

11755/18797 70



MLSP
MMSE estimates from a Gaussian

mixture

Py [X) =D P(KIXIN(Y; £y +CiyCrox (X = £ 1), ©)
K

= P(y|X) is a mixture Gaussian density

= E[y|X] is also a mixture

E[y [x]= 2 P(k|X)Ely |k, x]

Ely [X]= Y P(k [X)(g4, +Cp,xCote(X— 4 )
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MMSE estimates from a Gaussian

mixture

L ) e
§

F1

O e S
T

K
D

'
(]
T

= A mixture of estimates from individual Gaussians
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Voice Morphing

Align training recordings from both speakers
— Cepstral vector sequence

Learn a GMM on joint vectors
Given speech from one speaker, find MMSE estimate of the other
Synthesize from cepstra

11755/18797
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MMSE with GMM: Voice ™
Transformation

- Festvox GMM transformation suite (Toda)
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A problem with regressions
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e ML fit is sensitive

— Error is squared

A

A= (XX XYT

— Small variations in data = large variations in weights

— Outliers affect it adversely

e Unstable

— If dimension of X >= no. of instances

¢ (XXT)is not invertible
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Vichielzaming for SaraProcessing Gt

MAP estimation of weights

a —— Yy=a'X+e

* Assume weights drawn from a Gaussian
—P(a) = N(O, &?l)
 Max. Likelihood estimate
a=argmax, log P(y| X;a)
* Maximum a posteriori estimate
a=argmax, log P(a|y, X) =argmax_ log P(y| X,a)P(a)
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MAP estimation of weights
a=argmax , log P(a|y, X) =argmax , log P(y | X,a)P(a)
o P(@) = N(0, o2l)

o LogP(a)=C—log o —0.562|a||2
1

20

1

20~

log P(y | X,a)=C-——(y-a X)' (y-a'X)'

2

a=argmax , C'-log o — (y—a'X)' (y—a'X)' —-0.50°a'a

e Similar to ML estimate with an additional term
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MAP estimate of weights
dL =(2a"XX" +2yX" + 201 Jda=0

a=(XX"+ol) XY

* Equivalent to diagonal loading of correlation matrix

— Improves condition number of correlation matrix
e Can be inverted with greater stability

— Will not affect the estimation from well-conditioned data

— Also called Tikhonov Regularization
* Dual form: Ridge regression

 MAP estimate of weights
— Not to be confused with MAP estimate of Y
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MAP estimate priors

(A) A 2-D Laplace p.df. 1
1 £
0.15% 1

0.5

01106

0.053 7

n.on
-+

* Left: Gaussian Prioron W
* Right: Laplacian Prior
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MAP estimation of weights with "

laplacian prior

* Assume weights drawn from a Laplacian
—P(a) = A'exp(-Atfal,)
* Maximum @g posteriori estimate

a=argmax, C'—(y—a'X)' (y—a'X)' —A"[a|
e No closed form solution

— Quadratic programming solution required
* Non-trivial
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MAP estimation of weights with
laplacian prior

* Assume weights drawn from a Laplacian
—P(a) = A'exp(-Afal,)
* Maximum @g posteriori estimate

a=argmax, C'—(y—a'X)' (y—a'X)' —A"[a|

* Identical to L, regularized least-squares
estimation
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L,-regularized LSE

a=argmax, C'—(y—a'X)' (y—a'X)' —A"[a|

No closed form solution
— Quadratic programming solutions required

 Dual formulation

a=argmax, C'—(y—a'X)" (y—a'X)" subject to |a <t

“LASSO” — Least absolute shrinkage and
selection operator



LASSO Algorithms

Various convex optimization algorithms

LARS: Least angle regression
Pathwise coordinate descent..

Matlab code available from web
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Regularize
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Regularization results in selection of suboptimal (in

least-squares sense) solution
— One of the loci outside center

Tikhonov regularization selects shortest solution

* L, regularization selects sparsest solution
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LASSO and Compressive Sensing

Given Y and X, estimate sparse a

LASSO:
— X = explanatory variable
— Y =dependent variable
— a = weights of regression
CS:
— X = measurement matrix
— Y = measurement
— a=data
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An interesting problem: Predicting
War!

 Economists measure a number of social
indicators for countries weekly
— Happiness index
— Hunger index
— Freedom index
— Twitter records

e Question: Will there be a revolution or war next
week?
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An interesting problem: Predicting

War!
* |ssues:
— Dissatisfaction builds up — not an instantaneous
phenomenon
e Usually

— War / rebellion build up much faster
e Oftenin hours

* Important to predict
— Preparedness for security
— Economic impact
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Predicting War

7

=10
IR
e
=10
[S]0
S0
Sl o
S0

S| S| S| |S| |S| | |S] |S

Given wk1 wk2 wk3wk4 wk5wk6 wk7wk8
— Sequence of economic indicators for each week

— Sequence of unrest markers for each week

* At the end of each week we know if war happened or not
that week

* Predict probability of unrest next week
— This could be a new unrest or persistence of a current
one

11755/18797 88



MLSP
Predicting Time Series

e Need time-series models

e HMMs — later in the course
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