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Machine Learning for Signal
Processing
Linear Gaussian Models

Class 21. 13 Nov 2014

Instructor: Bhiksha Raj
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Recap: MAP Estimators

* MAP (Maximum A Posteriori): Find a “best

guess” for y (statistically), given known X
y = argmax y P(Y|x)
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Recap: MAP estimation

* Xandy are jointly Gaussian

X
gl -1

Var(z)zczz{gm gw} C,, = E[(x— i) (Y~ 42,)"]
P(2)=N(x,,C,) = Jzﬂlm |exp(—o.5<z—uz)<z—uzf)

e 7 is Gaussian
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MAP estimation: Gaussian PDF
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MAP estimation: The Gaussian at a
particular value of X
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Conditional Probability of y| x
P(y|X) = N(g, +C,C.l(x-,),C, —C;C,IC, )
B, [Y1= = 11, +C L CoH (X~ 11.)

Var(y|x)=C, —C, C,C

Xy —XX T Xy

* The conditional probability of y given X is also Gaussian

— The slice in the figure is Gaussian
e The mean of this Gaussian is a function of x

 The variance of y reduces if x is known
— Uncertainty is reduced
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MAP estimation: The Gaussian ata

particular value of X
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MAP Estimation of a Gaussian RV

y=argmax, P(y|x)=E,,[Y]
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Gaussians and more Gaussians..

e Linear Gaussian Models..

 PCA to develop the idea of LGM
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A Brief Recap

B D~BC

* Principal component analysis: Find the K bases that
best explain the given data

* Find B and C such that the difference between D and
BC is minimum
— While constraining that the columns of B are orthonormal
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Karhunen Loeve vs. PCA

* Eigenvectors of the Correlation  Eigenvectors of the Covariance
matrix: matrix:
— Principal directions of tightest — Principal directions of tightest

ellipse centered on origin ellipse centered on data

— Directions that retain maximum

— Directions that retain J
variance

maximum enerqy
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Karhunen Loeve vs. PCA

(7

* |f the data are naturally centered at origin, KLT == PCA

* Following slides refer to PCA!
— Assume data centered at origin for simplicity

* Not essential, as we will see..
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PCA In Vector Form
\ Xi =W,V +wyV, + ¢
/

X=WVWw +e

€

Error is at 90°
to the eigenface

\Vlz

Vy

* K-dimensional representation
X is a D dimensional vector

V is a D x K matrix

W is a K dimensional vector

e is a D dimensional vector
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Learning PCA

* For the given data: find the K-dimensional
subspace such that it captures most of the
variance in the data

— Variance in remaining subspace is minimal

11755/18797
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A Statistical Formulation of PCA o
o e o \/ ¥ = VAW 4 e
w ~ N (O, B)
e~ N(O E)

 Xis arandom variable generated according to a linear relation

Vi

W is drawn from an K-dimensional Gaussian with diagonal
covariance

e eisdrawn from a 0-mean (D-K)-rank D-dimensional Gaussian

15

* Estimate V (and B) given examples of X
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Linear Gaussian Models!!

X = VW +¢
w ~ N (O, B)
e~ N(O E)

 Xis arandom variable generated according to a linear relation

e W isdrawn from a Gaussian
e eijsdrawn from a O-mean Gaussian

e Estimate V given examples of X

— In the process also estimate B.and.E 16
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Linear Gaussian Models!!

ot
. cavs™
| ’i‘a»\'\“e‘ax
e “ce o
o eﬁ.‘(‘c oV
A\
Y“\Oée\ N : “&S a\
OQSQ(‘&‘DiagOﬂ g to a linear relation
C =
* * .\S\oﬂ‘I ean Gaussian
* Ese £ s given examples of X

— In the process also estimatelﬁsg)’l\ggl,:_
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Linear Gaussian Models

X=pn+Vw+e w-~N(@OB)
e~ N(O, E)

* Observations are linear functions of two uncorrelated

Gaussian random variables

— A “weight” variable w

— An “error” variable e

— Error not correlated to weight: E[e'w] =0
* Learning LGMs: Estimate parameters of the model

given instances of X

— The problem of learning the distribution of a Gaussian RV
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LGMs: Probability Density

X=n+WVWwW-+e w-~N(0,B)
e~ N(O, E)
* The mean of X:

E[x] = p+ VE[w]+ E[e] =
* The Covariance of X:

E[(x—E[X]\x—E[x]) ]=VBV' +E
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The probability of X
w ~ N (O, B)

x ~ N(u, VBV +E)

MLSP

P(X) =

1

J27)P [VBV' +E|

exp (— 0.5(x—p) (VBV" +E) " (x— u))

e X is alinear function of Gaussians: X is also Gaussian

* |ts mean and variance are as given

11755/18797
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Estimating the variables of the
model

w~N(0,B
X =p+Vw +e NG

X ~ N(u, VBV +E)

e Estimating the variables of the LGM is
equivalent to estimating P(X)

— The variables are u, V, Band E
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Estimating the model

w~N(0,B
X =p+Vw +e NG

x ~ N(u, VBV +E)

* The model is indeterminate:
— Vw = VCC1lw = (VC)(C1w)
— We need extra constraints to make the solution unique

e Usual constraint: B=1

— Variance of W is an identity matrix

11755/18797 22



MLSP

Estimating the variables of the ™
model D)
\/\/ "' ]
X=p+WVw+e e ~ N(0. E)

X~ N(u, W' +E)

* Estimating the variables of the LGM is
equivalent to estimating P(X)

— The variables are u, V, and E
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The Maximum Likelihood Estimate

X~ N(u, VW' +E)

* Given training set X, X,, .. X, find u, V, E

* The ML estimate of u does not depend on the
covariance of the Gaussian

HZ%ZXi
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Centered Data

)
(1

* We can safely assume “centered” data

—n=0
* If the data are not centered, “center” it

— Estimate mean of data

 Which is the maximum likelihood estimate
— Subtract it from the data
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Simplified Model

w~ N(O,I)
X =WVW +¢e e ~ N(0, E)

X~ N(@O,W' +E)

* Estimating the variables of the LGM is
equivalent to estimating P(X)

— The variables are V, and E
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Estimating the model

X=WVW +e

x ~N(O, W' +E)

Given a collection of X; terms

Estimate V and E

W is unknown for each X

But if assume we know W for each X, then

what do we get:
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Estimating the Parameters
X. =VWw.+e P()=N(,E) P(Xx|w)=N(\w,E)

1

V@) |E]|

e We will use a maximum-likelihood estimate

P(x | W) = exp(—0.5(x — V)" E* (x — Vw) )

* The log-likelihood of X;..Xy knowing their w.s

log P(X;. Xy |W,. W) =

—0.5N log |[E™[-0.5) " (x; — VW)  E™(x; —Vw,)
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Maximizing the log-likelihood

LL=-0.5Nlog|E™|-0.5> (x, —Vw,)" E7(x; — Vw,)

e Differentiating w.r.t. V and settingto O

MLSP

Vichielzaming for SaraProcessing Gt

RE g [

 Differentiating w.r.t. E-1 and settingto 0

RECARRLY

11755/18797
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Estimating LGMs: If we know w

X. =VW. +¢€

e b)

P(e)=N(0,E)

E :%(inxf —VZWiXTj

e Butin reality we don’t know the w for each X

— So how to deal with

* EM..

this?

11755/18797 30
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Recall EM

Instance from blue dice Instance from red dice Dice unknown

© ® ©

/\
2N

® . | . N . ® . | e . |
Collection of “blue” Collection of “red” Collection of “blue” Collection of “red” Collection of “blue” Collection of “red
numbers numbers numbers numbers numbers numbers

* We figured out how to compute parameters if we knew the
missing information

 Then we “fragmented” the observations according to the
posterior probability P(z|x) and counted as usual

* |n effect we took the expectation with respect to the a
posteriori probability of the missing data: P(z]|x)
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LGMs

X. =VW.+e P(e)=N(0,E)

e b)

E :%(inxf —VZWiXTj

-

V = [Z X; By, [W' ]j(z L ])1

1 1
E = ~ Zi:xixiT N VZ E . [WIX]

* Replace unseen data terms with expectations

taken w.r.t. P(w|x;)
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EM for LGMs
X. =VW.+e P(e)=N(0,E)

o] ey

* Replace unseen data terms with expectations
taken w.r.t. P(w|x;)
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Expected Value of w given x
x=Vw+e P(@€)=N(@OE) PW)=N(@O1I)
P(x)=N(,W' +E)
e Xand w are jointly Gaussian!
— X 1S Gaussian

— W is Gaussian
— They are linearly related

H P(z)=N(4,C,,)

W

11755/18797
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Expected Value of w given x

= \AW 6 M P(2) = N(4,C,,)
P(x)=N(0,W' +E) ﬂz{“x}:o
Ky

P(w)=N(0,1) < _[Cu Cu

“ {CWX CWJ
CXW — E[(X_lux)(w_luw)T] — V

c. {WT +E v}

\VA I

e Xand w are jointly Gaussian!

11755/18797
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The conditional expectation of w™
given z

* P(w]z)is a Gaussian

Ay
lLlZ :|: i|:0
PW [ X) = N (4, +ConCrt (X~ £4.), Copy ~ ConCiiCr) H

WX = XX = XW

c, C T
sz{ o XW} - :{W +E v}
Cox Cw] 77 VT |

P(w|x) =NV (W™ +E)x, I -V (W' +E) V)

Eux W=V (W' +E) "% E,. [ww']=Var(w)+E,, [WIE,, [W]'

EW|xi [\N\NT] =1- VT (WT + E)_lv + Ew|xi [W] Ew|xi [W]T
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LGM: The complete EM algorithm

Initialize V and E

MLSP

E step: :
E o [W]= VT (W +E) "X
E W 1= 1 =VT (W' +E) 'V +E,,, [WIE,, [W]'
M step:

V = (Z X; By, [W' ]j(Z L7 ]T

1 1
E=— Z XX — ~ VZ E i, [WIX{

11755/18797
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So what have we achieved

* Employed a complicated EM algorithm to learn a
Gaussian PDF for a variable x

* What have we gained???

 Example uses:

— PCA
* Sensible PCA
* EM algorithms for PCA

— Factor Analysis
* FA for feature extraction

11755/18797
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LGMs : Application 1 A
Learnlng prmapal components

X=VWVW+e
w~ N(O, )
e~ N(O E)

* Find directions that capture most of the
variation in the data

* Error is orthogonal to principal directions
—V'e=0; e'V=0

11755/18797 39
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Some Observations: 1
X =WVW +¢e e ~ N(0, E)
E =E[ee']

V'E =E[V'ee' ]=E[0e']=0

 The covariance E of e is orthogonal to V
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Observation 2

V'E=0

VIIWT +E)! = (VV) VT

 Proof

VT (WT +E)Y{(WT +E)=(V'V)'VT (W' +E)

VT =(VIV)'VWT +(V'V)IVE
VT =IVT +(VTV) 10
VT =VT




Observation 3

V'E=0

VIIWT +E) = (VV) VT

— pinv(V)

MLSP



LGM: The complete EM algorithm

MLSE

SaraProcessing G

X=WW +¢e X =WVW

* |nitialize V and E

* E step:

[W]=V' (W' +E)*'x

W|x

W|X

[\N\N ]_ | VT (WT + E) 1V+ EW|x [W] Ew|x [W]

* M step:

V = (Z X; By, [W' ]j(Z L7 ]T

T XX -~ VY, WX

11755/18797
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LGM: The complete EM algorithm

MLSE

SaraProcessing G

X=WW +¢e X =WVW

* |nitialize V and E

* E step:

[W]l=V' (W' +E)*"x

W|X

W|X

[\N\N ]_ | VT (WT + E) 1V+ EW|x [W] Ew|x [W]

* M step:

V = (Z X; By, [W' ]j(Z L7 ]T

T XX -~ VY, WX

11755/18797
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LGM: The complete EM algorithm
X=WW +e X =W

* |nitialize V and E
e Estep: |wi=V (W' +E)"X = pinv(V)x,

EW|xi [\N\NT] =1- VT (WT + E)_lv + EW|xi [W] Ew|xi [W]T

* M step:
V= (Z X; E e, [W ]j(z E [’ ]j

1 1
E=— Z XX — ~ VZ E i, [WIX{
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LGM: The complete EM algorithm
X=WW +e X =W

* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv + EW|xi [W] Ew|xi [W]T

* M step:
V= (Z X; E e, [W ]j(z E [’ ]j

1 1
E=— Z XX — ~ VZ E i, [WIX{
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LGM: The complete EM algorithm

X~VW
* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv + EW|xi [W] Ew|xi [W]T

* M step:
V= (Z X; E e, [W ]j(z E [’ ]j

1 1
E=— Z XX — ~ VZ E i, [WIX{

11755/18797 a7
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LGM: The complete EM algorithm

X~VW
* |nitialize V and E

EW|xi [\N\NT] =1- VT (WT + E)_lv + EW|xi [W] Ew|xi [W]T

* M step:
V= (Z X; E e, [W ]j(z E [’ ]j

1 1
E=— Z XX — ~ VZ E i, [WIX{
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EM for PCA

* |nitialize V and E

* E step:

MLSP

Vichielzaming for SaraProcessing Gt

X~ VW

W|X

[V\NV ]_ | _VT (WT + E) 1V+ EW|x [W]Ew|x [W]

w|x

[ww']=1-Pinv(V)V + E,ix [WIE [w]' =

* M step:

V= (Z X E . [W' ]j(Z B, [ ]j

-1

T XX -~ VY, WX

11755/18797
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EM for PCA

* |nitialize V and E

v.= (Z X; By, [W' ]j(Z L7 ]T

1 1
E=— Z XX — ~ VZ E i, [WIX{

11755/18797
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EM for PCA

MLSP
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X~ VW

* |nitialize V and E

* E step:

.

* M step:

> Ep [ = WW

b et

= iZXiXiT = VZ, E . [WIX;

11755/18797
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EM for PCA

* |nitialize V and E

TE I

* M step:
V= (Z X; E e, [W ]j(z E [’ ]j

T XX -~ VY, WX
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EM for PCA

* |nitialize V and E

MLSP

Vichielzaming for SaraProcessing Gt

TE I

* M step:
V = (Z X; E gy, [W' ]](Z E W ]j = XW' (WwW')™

T XX -~ VY, WX

11755/18797
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EM for PCA

* |nitialize V and E

TE I

* M step:

V= (in E W ]j[z E [ ]] — XWT (WWT) % = Xpinv(W)

T XX -~ VY, WX
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EM for PCA

* |nitialize V and E

* E step:

.

* M step:

MLSP

> E [ ]=WWT

:%izxi

K =V By WK

11755/18797
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EM for PCA

* |nitialize V and E

E = %inxf — % VY E [WIX]
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EM for PCA

* |nitialize V and E

AN /\/\/\

* Mstep: irrelevant

V = X pinv(W)
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EM for PCA

* |nitialize V

* [terate

* Note: V will not be actual eigenvectors, but a set of
bases in space spanned by principal eigenvectors

— Additional decorrelation within PC space may be needed

11755/18797
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Why EM PCA?

X XX

10000 x 10000

10000 x 300

Example: Computing eigenfaces
Each face is 100x100 : 10000 dimensional

But only 300 examples
— X is 10000 x 300

What is the size of the covariance matrix?
What is its rank?

11755/18797
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PCA on illconditioned data

* Few instances of high-dimensional data

— No. instances < dimensionality
e Covariance matrix is very large
— Eigen decomposition is expensive

— E.g. 1000000-dimensional data: Covariance has
1012 elements

e But the rank of the covariance is low

— Only the no. of instances of data
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Why EM PCA?

X

10000 x 300

N/
N/

V

=

300 x 30

10000 x 300,

X~ VW

 Consequence of low rank X

— The actual number of bases is limited to the rank of X

 Note actual size of V

— Max number of columns = min(dimension, no. data points)

— No. of columns = rank of (XXT)

* Note size of W

— Max number of rows = min(dimension, no. of data points)

11755/18797

MLSP
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Why EM PCA?

=

X ~ \/ |l Bo0x'300

10000 x 300,

10000 x 300 | X ~ \/\\\/

* If Xis high dimensional

— Particularly if the number of vectors in X is smaller
than the dimensionality

* Pinv(V) and pinv(W) are efficient to compute
— V will have a max of 300 columns in the example
— W will have a max of 300 rows
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PCA as an instance of LGM

* Viewing PCA as an instance of linear Gaussian
models leads to EM solution

* Very effective in dealing with high-
dimensional and/or data poor situations

* An aside: Another simpler solution for the
same situation..
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An Aside: The GRAM trick

X XX

10000 x 10000

10000 x 300

* The number of non-zero Eigen values is no more than the
length of the smallest “edge” of X

— 300 in this case
* This leads to the “gram” trick..

* Assumption X™X is invertible: the instances are linearly
independent
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An Aside: The GRAM trick

X

XT

« XXTislarge but XX is not

)

XT

X

11755/18797

If Xis 10000 x 300,
XXT = 10000 x 10000

)

If X is 10000 x 300,
XTX =300 x 300

Difficult to compute Eigen vectors of XXT

But easy to compute Eigen vectors of XX
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The Gram Trick

* To compute principal vectors we
Eigendecompose XXT

(XXT E=EA

* Let us find the Eigen vectors of X"™X instead
(XTXE =EA

* Manipulating it slightly

Note that for a diagonal matrix:

AA05 = AO5A XT XEIA\_O'S = E/A\_O'SIA\
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The Gram Trick

* Eigendecompose X™X instead of XXT
(XTXE =EA
X"XEA®® =EA°A
(XXT Y XEA®® )= (XEA A
o Letting: XEA®° =E
(XXT E=EA

* Eisthe matrix of Eigenvectors of XXT!!!

11755/18797
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The Gram Trick

When X is low rank or XX is too large:

Compute X™X instead
— Will be manageable size

Perform Eigen Decomposition of X™X
(XTX)E = EA
Compute Eigenvectors of XX as
XEA® =E
These are the principal components of X

11755/18797

MLSP
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Why EM PCA

* Dimensionality / Rank has alternate potential
solution

— Gram Trick

e Other uses?
— Noise
— Incomplete data

11755/18797
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PCA with noisy data
X=WVW+e+n

w~ N(O,I)
T e~ N(0, E)

* Erroris orthogonal to principal directions
—Vie=0; efV=0

* Noise is isotropic
— Bis diagonal
— Noise is not orthogonal to either Vor e

11755/18797 70



LGM: The complete EM algorithm

* |nitialize V and E

MLSP

* E step: :
E o [W]= VT (W +E) "X
E W 1= 1 =VT (W' +E) 'V +E,,, [WIE,, [W]'
* M step:

V = (Z X; By, [W' ]j(Z L7 ]T

1 1
E=— Z XX — ~ VZ E i, [WIX{

11755/18797
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PCA with Noisy Data

e |nitialize V and B

* E step:

* M step:

B=VT (W' +B)"

W= X

C=nl-ngvV+WW'

V=XW'C™

B:%diag(XXT VWX )

11755/18797
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PCA with Incomplete Data

“ K ﬁ E

* How to compute principal directions when
some components in your training data are
missing?

* Eigen decomposition is not possible

— Cannot compute correlation matrix with missing
data
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PCA with missing data

How it goes

* Given : X = {X_, X}

— X, are missing components

4,
5.
6.
7.

Initialize: Initialize X,

Build “complete” data X = {X_, X}

PCA (X =VW): Estimate V

— V must have fewer bases than dimensions of X

W=VTX
X = VW
Select X, from X

Return to 2

11755/18797
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LGM for PCA

* Obviously many uses:
— lll-conditioned data
— Noise
— Missing data

— Any combination of the above..

11755/18797
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LGMs : Application 2
Learning with insufficient data

oo
oo LT
001 i

 The full covariance matrix of a Gaussian has D? terms

* Fully captures the relationships between variables

* Problem: Needs a lot of data to estimate robustly
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D.Da__,..;........: ”
ao2d.i

An Approximation

aot i

* Assume the covariance is diagonal

MLSP

Vichielzaming for SaraProcessing Gt

— Gaussian is aligned to axes : no correlation between dimensions
— Covariance has only D terms

Needs less data

Problem : Model loses all information about correlation

between dimensions

11755/18797
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Is There an Intermediate

e Capture the most important correlations
* But require less data

e Solution: Find the key subspaces in the data

— Capture the complete correlations in these
subspaces

— Assume data is otherwise uncorrelated

11755/18797
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Factor Analysis

w~ N(O,I)
X =WVW +¢e e ~ N(0, E)

X~ N(@O,W' +E)

e Fis a full rank diagonal matrix

* V has K columns: K-dimensional subspace

— We will capture all the correlations in the
subspace represented by V

e Estimated covariance: Diagonal covariance E
plus the covariance between dimensions in V



Factor Analysis

* |nitialize V and E

MLSP

Vehinelaming For SnaProcesing Gy

* E step: : — ]
E.x. W=V (W' +E)7X
Ewlxi [VVWT =1 -V' (WT + E)_lv + EWlxi [w] EWlxi [W]T
* M step:

vz(zxi E o W] ])(Z S [WWT]jl

E= % diag (ZXiXiT _%VZ B, [WIX; j

11755/18797
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FA Gaussian

oo
oo LT
001 i

* Will get a full covariance matrix

* But only estimate DK terms

e Data insufficiency less of a problem
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The Factor Analysis Model

w~ N(O,I)
x&@e e ~ N (0, E)

LOADINGS FACTORS

e Often used to learn distribution of data when
we have insufficient data

e Often used in psychometrics

— Underlying model: The actual systematic
variations in the data are totally explained by a
small number of “factors”

— FA uncovers these factors
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FA: Example

* Hypothesis: there are two kinds
of intelligence, "verbal" and "mathematical",

— neither is directly observed.

— Evidence sought from examination scores from
each of 10 different academic fields of 1000
students.

e Solution: Find out if distribution is well
explained by two factors

— Hack: Attempt to relate factors to verbal and math

1Q



http://en.wikipedia.org/wiki/Intelligence_(trait)
http://en.wikipedia.org/wiki/Evidence

FA, PCA etc.

X = VW +

w~ N(O,I)
€ e ~ N (0, E)

* Note: distinction between PCA and FA is only
in the assumptions about e

* FA looks a lot li

* FA can also be
data

ke PCA with noise

oerformed with incomplete
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Vichielzaming for SaraProcessing Gt

FA, PCA etc.

) =

PCA: Error is always at 90 degrees to the bases in V

FA: Error may be at any angle

PCA used mainly to find principal directions that
capture most of the variance

— Bases in V will be orthogonal to one another
FA tries to capture most of the covariance
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FA: A very successful use

* Voice biometrics: Speaker identification

* Given: Only a small amount of training data
from a speaker, learn model for speaker

— Use to verify speaker later

* Problem: Immense variation in ways people
can speak

— 15 minutes of training data totally insufficient!
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Speaker Verification

» Il

A model represents distribution of cepstral vectors for the
speaker

* A second model represents everyone else (potential
imposters)

* The cepstra computed from a test recording are “scored”
against both models

— Accept the speaker if the speaker model scores higher
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Speaker Verification

» Il

* Problem: One typically has only a few seconds or
minutes of training data from the speaker

* Hard to estimate speaker model

e Test data may be spoken differently, or come over a
different channel, or in noise

— Wont really match
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Hypothesis

Variations between different instances of the utterance
spoken by the same speaker related to only a few factors

Factors are common to all speakers

Solution: Learn factors by analyzing many speakers

— Use learned factors to predict variations for a given speaker

— Can provide robust models for a speaker from very little data

11755/18797 89
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Representing the Data: “super "
vectors”

x10” /
8-
00 z
e
o
0
0 005 01 444

* Convert recordings to a sequence of feature
vectors

— Cepstra
 Compute the probability distribution for the data
— Modeled as a Gaussian mixture

 The data are represented by the parameters of
the distribution
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Representing the Data: “super "™
vectors”

x10°
8+
00 £
e
o
0-
0
005 g4
‘ 015 02 g5 o

P(X)=> WN(X;4,0,)

This “supervector” is ‘

the feature that - -

represents the H
recording 1,
M
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* Supervectors are obtained for each training
speaker by adapting a “Universal background
model” trained from large amounts of data
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Training the Factor Analyzer

X=VW+€e  w~N(0,I)e~N(0,E)

* The supervectors are assumed to be the
output of a linear Gaussian process

e Use FA to estimate V

— V are the factors that cause variations
— The real information is in the factor w
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Training models for a speaker

X=VWWgs+€ \~N(,I)e~N(,E)

 From training data: estimate the means for the speaker to conform
to the factor analysis

— Constrained estimation: requires much less data

* Use the estimated means as the distribution for the speaker
— Solves data insufficiency problem
— Also solves the problem of variations
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Many other applications..

* Exploratory FA
e Confirmatory FA..
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Good Luck..

Project abstracts due by Nov 30%™.

Presentation on 4t" at 4.30 PM

Demos and posters

HWs due by 3.
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