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Overview

* More on matrix types

* Matrix determinants

* Matrix inversion

* Eigenanalysis

e Singular value decomposition
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Orthogonal/Orthonormal vectors

X U
A=y B=|v
7 W

AB=0 = xu+w+zw=0

* Two vectors are orthogonal if they are perpendicular to one another
— AB=0

— A vector that is perpendicular to a plane is orthogonal to every vector on the
plane

 Two vectors are orthonormal if
— They are orthogonal
— The length of each vectoris 1.0

— Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
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Orthogonal matrices

Jos  Jo125  —40.375
0 075 05

* Orthogonal Matrix : AA"= ATA = |

The matrix is square
All row vectors are orthonormal to one another

* Every vector is perpendicular to the hyperplane formed by all other vectors
All column vectors are also orthonormal to one another

Observation: In an orthogonal matrix if the length of the row vectors
is 1.0, the length of the column vectors is also 1.0

Observation: In an orthogonal matrix no more than one row can
have all entries with the same polarity (+ve or —ve)
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Orthogonal and Orthonormal Matrices

2 AX ;

—

* Orthogonal matrices will retain the length and relative
angles between transformed vectors

— Essentially, they are combinations of rotations, reflections and
permutations

— Rotation matrices and permutation matrices are all orthonormal
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Orthogonal and Orthonormal Matrices

Jo5 o1 Jo3rs
Jos  Jo125  —A0.375
0 Jo7s 05

* |If the vectors in the matrix are not unit length, it cannot
be orthogonal
— AATI=|, ATA =]
— AA'" = Diagonal or A'A = Diagonal, but not both

— If all the entries are the same length, we can get AAT = ATA = Diagonal, though

* A non-square matrix cannot be orthogonal
— AA'=| or ATA = |, but not both
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Matrix Rank and Rank-Deficient Matrices

\‘\\\lllll /]

i y

reutl =

P * Cone =

* Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
4 Sep 2014
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Matrix Rank and Rank-Deficient Matrices

Pz

1.0000 a o
] 0.z500 —-0.4330 o.5000 -0.250a0 0.4330
] -0.4330 0.7500 -0.z500 o.1z50 -0.2165
0.4330 -0.21a5 0.3750
‘0‘5""
’ ) b — 05 U_E. ) - s
45 FTS
Rank = 2 Rank =1

* Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms
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= P=W (W'W)!WT; Projected Spectrogram = P*M
= The original spectrogram can never be recovered
o Pisrank deficient

= P explains all vectors in the new spectrogram as a mixture of

only the 4 vectors in W
o There are only a maximum of 4 independent bases

o RankofPis4
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Non-square Matrices

X XN

(8 9] o
Xl X2 XN 1 .9 Yl YZ YN
Yi Y2 - - Yn -6 0] ER ay
X = 2D data P = transform PX =3D, rank 2

* Non-square matrices add or subtract axes

— More rows than columns = add axes
' But does not increase the dimensionality of the data
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Non-square Matrices

X X .. X 50 5
b " 31 2 IR
i Y2 Yn 1 Y2 - - Y
5 1 1
| 4, Zy |
X = 3D data, rank 3 P = transform PX = 2D, rank 2

* Non-square matrices add or subtract axes

— Fewer rows than columns = reduce axes

* May reduce dimensionality of the data
4 Sep 2014 11-755/18-797 11



8 9]
1.9
6 0

The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

The matrix can never increase dimensions
— Cannot convert a circle to a sphere or a line to a circle

The rank of a matrix can never be greater than the lower of its two
dimensions
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= Projected Spectrogram =P * M
o Every vector in it is a combination of only 4 bases
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= The rank of the matrix is the smallest no. of bases required to

describe the output

o E.g.if note no. 4 in P could be expressed as a combination of notes 1,2

and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection

o The rank of P would be 3!

4 Sep 2014 11-755/18-797
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Matrix rank is unchanged by transposition
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* |f an N-dimensional object is compressed to a
K-dimensional object by a matrix, it will also
ne compressed to a K-dimensional object by
the transpose of the matrix
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Matrix Determinant

Fi+r3

F1+r24r3

(r2) la+c,b+d) (r1+r2)
fc.dl

4 = [ﬂ- b] (r1) A=
) ¢ df (2

(2.b) (r1)

The determinant is the “volume” of a matrix

Actually the volume of a parallelepiped formed from its
row vectors

— Also the volume of the parallelepiped formed from its column
vectors

Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective

Volume=Vv, Volume =V,

08 0 o071 “
10 08 08 °

0.7 09 07

=
\‘, g

* The determinant is the ratio of N-volumes
— If V, is the volume of an N-dimensional sphere “O” in N-dimensional

space
* Ois the complete set of points or vertices that specify the object

— If V, is the volume of the N-dimensional ellipsoid specified by A*O,
where A is a matrix that transforms the space

— IAl =V2/V1
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Matrix Determinants

* Matrix determinants are only defined for square matrices

— They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

 Rank deficient matrices have determinant O

— Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

* E.g.a 3-Dsphereinto a 2-D ellipse: The ellipse has 0 volume (although it
does have area)

e Conversely, all matrices of determinant O are rank deficient

— Since they compress full-volumed N-dimensional objects into
zero-volume objects

4 Sep 2014
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Multiplication properties

* Properties of vector/matrix products
— Associative

A-(B-C)=(A-B)-C
— Distributive
A-B+C)=A-B+A-C
— NOT commutative!ll
A-B=B-A

* left multiplications # right multiplications
— Transposition

(A-B) =BT -AT

4 Sep 2014 11-755/18-797
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Determinant properties

Associative for square matrices ‘A B- C‘ — ‘A‘ . ‘B‘ . ‘C‘

— Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

Volume of sum != sum of Volumes ‘(B + C)‘ —+ ‘B‘ + ‘C‘

Commutative
— The order in which you scale the volume of an object is irrelevant

A-B|=[B-Al=|A[B]

4 Sep 2014 11-755/18-797
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Matrix Inversion

A matrix transforms an
N-dimensional object to a
different N-dimensional

object Ca 0k o
K T=|1.0 0.8
0.7 0.9

What transforms the new o
object back to the original? Q{_, ) ?}Tl

. . 2 7 9
— The inverse transformation Cor

The inverse transformation is
called the matrix inverse

4 Sep 2014 11-755/18-797 20
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Matrix Inversion

T-4T*D=D & TIT=|

* The product of a matrix and its inverse is the
identity matrix

— Transforming an object, and then inverse
transforming it gives us back the original object

T*T*D=D > TT1=|

4 Sep 2014 11-755/18-797 21
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Inverting rank-deficient matrice

“f1 0 0
0 25 —0.433
0 -0433 075

* Rank deficient matrices “flatten” objects

— In the process, multiple points in the original object get mapped to the same
point in the transformed object

* |tis not possible to go “back” from the flattened object to the original
object
— Because of the many-to-one forward mapping

* Rank deficient matrices have no inverse

4 Sep 2014 11-755/18-797 22
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= The projection matrix is rank deficient

= You cannot recover the original spectrogram from the

projected one..
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Revisiting Projections and Least Squares

* Projection computes a least squared error estimate
* For each vector V in the music spectrogram matrix

— Approximation: V, ., =a*notel + b*note2 + c*note3..

d
0|0
T=||g|gE V. =T|b
888 approx
C

— ErrorvectorE= V-V, .,

— Squared error energy for V. e(V) = norm(E)?
* Projection computes V., for all vectors such that Total error is
minimized
* But WHAT ARE “a” “b” and “c”?

4 Sep 2014 11-755/18-797 24



The Pseudo Inverse (PINV)

Vv

approx —

T

a
b
c

) VT

a
b
c

=)

b
C

= PINV (T)*V

 We are approximating spectral vectors V as the

transformation of the vector [a b c]’

— Note — we’re viewing the collection of bases in T as a

transformation

 The solution is obtained using the pseudo inverse

— This give us a LEAST SQUARES solution

* If T were square and invertible Pinv(T) = T-%, and V=V

4 Sep 2014
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M = :
N X =PINV(W)*M
"%I_ m\fkvé.\*._ﬂ-&__nv‘ P~ J\-ﬂ___l{:,./— ( )
1 == - * =
w=| :
Recap P=W (WTW) T\WT, PrOJected Spectrogram P*M -

m  Approximation: M = W*X

= The amount of W in each vector = X = PINV(W)*M

= W*Pinv(W)*M = Projected Spectrogram

o W*Pinv(W) = Projection matrix!!
4 Sep 2014 11-755/18-797
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Explanatlon W|th

MLSP
uItlpIe notes
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= X = Pinv(W)*M; Projected matrix = W*X = W*Pinv(W)*M

4 Sep 2014
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How about the other way?

l

=l B P = - e k- T T

FOoOOoo

E u=

s WV =M  W=MPinv(V) U=WV
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Pseudo-inverse (PINV)

* Pinv() applies to non-square matrices
* Pinv ( Pinv (A)))=A
* A*Pinv(A)= projection matrix!

— Projection onto the columns of A

If A=K x N matrix and K> N, A projects N-D vectors
into a higher-dimensional K-D space

— Pinv(A) = NxK matrix
— Pinv(A)*A =1 in this case
 Otherwise A * Pinv(A) =1
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Matrix inversion (division)

* The inverse of matrix multiplication
— Not element-wise division!!

* Provides a way to “undo” a linear transformation
— Inverse of the unit matrix is itself
— Inverse of a diagonal is diagonal
— Inverse of a rotation is a (counter)rotation (its transpose!)
— Inverse of a rank deficient matrix does not exist!
* But pseudoinverse exists

* For square matrices: Pay attention to multlpllcatlon side!

A-B=C, A=C-B"', B=A"-C

If matrix is not square use a matrix pseudoinverse:

A-B=C, A=C-B", B=A"-C

4 Sep 2014 11-755/18-797 30



MLSP

Eigenanalysis

* If something can go through a process mostly
unscathed in character it is an eigen-something

— Sound example: @ @ @ @

* Avector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector
— Its length can change though

* How much its length changes is expressed by its
corresponding eigenvalue

— Each eigenvector of a matrix has its eigenvalue

* Finding these “eigenthings” is called eigenanalysis

4 Sep 2014 11-755/18-797 31
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EigenVectors and EigenValues

Black : :
1 M 1.5 _0.7 1
vectors ) L// 07 10 | .
are 0 i;> : U _

eigen
vectors

* Vectors that do not change angle upon
transformation
— They may change length

MV = AV

— V = eigen vector

— A =eigen value
4 Sep 2014 11-755/18-797 32
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Eigen vector example
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Matrix multiplication revisited

1.0 —-0.07 | -5
A=
-11 1.2 i

* Matrix transformation “transforms” the space

— Warps the paper so that the normals to the two
vectors now lie along the axes

4 Sep 2014 11-755/18-797 34
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A stretching operation

’ \

14| 08

e Draw two 1ines

* Stretch / shrink the paper along these lines by factors A,
and A,

— The factors could be negative — implies flipping the paper
* The resultis a transformation of the space

4 Sep 2014 11-755/18-797 35
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A stretching operation

m Draw two lines

» Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
= The result is a transformation of the space

4 Sep 2014 11-755/18-797 36
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Physical interpretation of eigen vector

* The result of the stretching is exactly the same as transformation by a
matrix

e The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

 The EigenVectors and EigenValues convey all the information about the
matrix
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Physical interpretation of eigen vector

V=V, V]
|4 0
A‘_o A
M =VAV ™

* The result of the stretching is exactly the same as transformation by a
matrix

* The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix

4 Sep 2014 11-755/18-797 38



Eigen Analysis

* Not all square matrices have nice eigen values and
vectors

— E.g. consider a rotation matrix

— This rotates every vector in the plane
* No vector that remains unchanged

* In these cases the Eigen vectors and values are complex

4 Sep 2014

4

B cos@ -—sin@
“|sin@ cos@
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< 6
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Singular Value Decomposition

1.0 -0.07
A=
-11 1.2

* Matrix transformations convert circles to ellipses

* Eigen vectors are vectors that do not change direction in the
process

* There is another key feature of the ellipse to the left that carries
information about the transform

— Can you identify it?

4 Sep 2014 11-755/18-797 40
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Singular Value Decomposition

1.0 -0.07
A=
-11 1.2

||||||||||||

 The major and minor axes of the transformed ellipse
define the ellipse

— They are at right angles

* These are transformations of right-angled vectors on
the original circle!

4 Sep 2014 11-755/18-797 41
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Singular Value Decomposition

s U | { 1.0 —0.07} |
158¢ — A: 15
| -11 1.2 |
i A=USVT I
matlab:
[U,5,V]=svd(A)

1 1 1 1 1 1 1 1 1 1
256 2 415 1 DA o 04 1 15 2 25 -2.I5 2I -1 .I5 1I -D.IS 0 D.IS 1I 1.I5 2I 2.I5

e UandV are orthonormal matrices
— Columns are orthonormal vectors

* Sisadiagonal matrix

* The right singular vectors in V are transformed to the left singular vectors

in U
— And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

* The left and right singular vectors are not the same

— If Ais not a square matrix, the left and right singular vectors will
be of different dimensions

 The singular values are always real

* The largest singular value is the largest amount by which a
vector is scaled by A

— Max (|Ax| / |x])
* The smallest singular value is the smallest amount by which

a vector is scaled by A

— Min (|Ax]| / |x]) = s,

— This can be O (for low-rank or non-square matrices)

- Smax

4 Sep 2014 11-755/18-797 43
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The Singular Values

18r \J
72| 1 1 1 1 1 1 1 1 1
2A -2 -148 -1 04 ] 0s 1 14 2 25

e Square matrices: product of singular values = determinant of the matrix

— This is also the product of the eigen values

— l.e. there are two different sets of axes whose products give you the area of
an ellipse

* For any “broad” rectangular matrix A, the largest singular value of any
square submatrix B cannot be larger than the largest singular value of A

— An analogous rule applies to the smallest singular value
455 ,This property is utilized in various problems, such as compressive sensing
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SVD vs. Eigen Analysis

a2l L L L L L L L L L
25 -2 -1.5 -1 05 ] 05 1 15 2 28

* Eigen analysis of a matrix A:

— Find two vectors such that their absolute directions are not changed by the
transform

e SVD of a matrix A:

— Find two vectors such that the angle between them is not changed by the
transform

* For one class of matrices, these two operations are the same

4 Sep 2014 11-755/18-797 45
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A matrix vs. its transpose

* Multiplication by matrix A:

— Transforms right singular vectors in V to left singular
vectors U

* Multiplication by its transpose A':
— Transforms left singular vectors U to right singular vector V

e AA'" : Converts Vto U, then brings it back to V
— Result: Only scaling

4 Sep 2014 11-755/18-797 46



Symmetric Matrices

* Matrices that do not change on transposition
— Row and column vectors are identical

* The left and right singular vectors are identical
- U=V
— A=USUT

 They are identical to the Eigen vectors of the matrix

 Symmetric matrices do not rotate the space
— Only scaling and, if Eigen values are negative, reflection

4 Sep 2014 11-755/18-797
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Symmetric Matrices

* Matrices that do not change on transposition

— Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values are
always real

* Eigen vectors are always orthogonal
— At 90 degrees to one another

4 Sep 2014 11-755/18-797 48
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Symmetrlc Matrices

15 -07
=07 1

* Eigen vectors point in the direction of the
major and minor axes of the ellipsoid resulting
from the transformation of a spheroid

— The eigen values are the lengths of the axes

4 Sep 2014 11-755/18-797 49
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Symmetric matrices

e Eigen vectors V, are orthonormal

TN —
e Listing all eigen vectors in matrix form V
— VT= VI
— Viv=]
— VVIi=]
d M Vi = }\’Vl

* Inmatrixform : MV =V A
— A is a diagonal matrix with all eigen values

M=V AV!

4 Sep 2014 11-755/18-797 50
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Square root of a symmetric matrix

C=VAV'
Sart(C) =V.Sqrt(A)V'
Sqrt(C).Sqrt(C) =V.Sart(A)V 'V.Sart(A) V'

=V.Sgrt(A).Sgrt(A)V' =VAV' =C

* The square root of a symmetric matrix is easily
derived from the Eigen vectors and Eigen values

— The Eigen values of the square root of the matrix are the
square roots of the Eigen values of the matrix

— For correlation matrices, these are also the “singular
values” of the data set
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Definiteness..

e SVD: Singular values are always positive!
* Eigen Analysis: Eigen values can be real or imaginary

— Real, positive Eigen values represent stretching of the space along
the Eigen vector

— Real, negative Eigen values represent stretching and reflection
(across origin) of Eigen vector

— Complex Eigen values occur in conjugate pairs

e Asquare (symmetric) matrix is positive definite if all Eigen
values are real and positive, and are greater than O
— Transformation can be explained as stretching and rotation
— If any Eigen value is zero, the matrix is positive semi-definite

4 Sep 2014 11-755/18-797 52
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Positive Definiteness..

* Property of a positive definite matrix: Defines
inner product norms

— xTAx is always positive for any vector x if A is
positive definite

* Positive definiteness is a test for validity of
Gram matrices
— Such as correlation and covariance matrices

— We will encounter other gram matrices later

4 Sep 2014 11-755/18-797 53
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SVD vs. Eigen decomposition

* SVD cannot in general be derived directly from the Eigen
analysis and vice versa

e But for matrices of the form M = DD’, the Eigen
decomposition of M is related to the SVD of D
— SVD: D=USVT
— DD'= USVTVSUT =US2UT

* The “left” singular vectors are the Eigen vectors of M

— Show the directions of greatest importance

* The corresponding singular values of D are the square roots of
the Eigen values of M

— Show the importance of the Eigen vector

4 Sep 2014 11-755/18-797 66
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Thin SVD, compact SVD, reduced SVD
NX

N MxM
VT

NxM

>
-

NxM

e SVD can be computed much more efficiently than Eigen
decomposition

 Thin SVD: Only compute the first N columns of U
— All that is required if N < M

 Compact SVD: Only the left and right singular vectors corresponding to
non-zero singular values are computed
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Why bother with Eigens/SVD

* (Can provide a unique insight into data

— Strong statistical grounding D

— Can display complex interactions -
between the data ———

— Can uncover irrelevant parts of the i E

data we can throw out

e Can provide basis functions E !
— A set of elements to compactly — N =

describe our data Lf =]

— Indispensable for performing E E

compression and classification

* Used over and over and still perform | IIE_igelﬂfacesf f
amazingly well Using a linear transform o

the above “eigenvectors” we
can compose various faces
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inekzaming - 2 Procesing (74

Trace
. .
S /aiz Yy Y| Tr(A)=a,+a,,+a;+a,
d,, [a,, a
A | %2 (G2 /23 24
A1 Gy (33 Gy Tr(A) = Zai,i
— A -
| 841 Ay Q3 Ay |

e The trace of a matrix is the sum of the
diagonal entries

* |tis equal to the sum of the Eigen values!

Tr(A) = Zai,i = Z/lu



e Often appears in Error formulae

D=

* Useful to know some properties..

4 Sep 2014

error = > E?,
]
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Trace

C =

@)

N
o

w

N
N
w
N

O O O
w
N

O O O
W
w
=

N
w

error =Tr(EE")
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Properties of a Trace

* Linearity: Tr(A+B)=Tr(A) + Tr(B)
Tr(c.A)=c.Tr(A)

* Cycling invariance:

— Tr (ABCD) = Tr(DABC) = Tr(CDAB) =
Tr(BCDA)
— Tr(AB) = Tr(BA)

* Frobenius norm F(A) = X, a;> = Tr(AA")
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* Square A: LU decomposition

Decompositions of matrices
— Decompose A =L U

— Lis a lower triangular matrix - k

* All elements above diagonal are O

— Ris an upper triangular matrix
* All elements below diagonal are zero

— Cholesky decomposition: A is symmetric, L = U"

* QR decompositions: A = QR

— Qis orthgonal: QQ" = | B
— Ris upper triangular -

* Generally used as tools to
compute Eigen decomposition or least square solutions
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Calculus of Matrices

* Derivative of scalar w.r.t. vector
* For any scalar z that is a function of a vector X

* The dimensions of dz / dx are the same as the
dimensions of X

_ dz _
X; —d
. X
X = : dZ . . 1
X, dx | dz
dx,,
N x 1 vector — —

N X 1 vector
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Calculus of Matrices

 Derivative of scalar w.r.t. matrix

* For any scalar z that is a function of a matrix X

* The dimensions of dz/ dX are the same as
the dimensions of X
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| dz
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dz dz
dx, dx,

dz dz
dx,, dXy

N x M matrix
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Calculus of Matrices

 Derivative of vector w.r.t. vector

* For any Mx1 vector y that is a function of an
Nx1 vector X

e dy/dX isan MxN matrix

oy, dy

_yl_ _Xl_ dy d?(l : d):('\'
Y=l E ey,
Vv _ AN dx, dx,,

M x N matrix
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Calculus of Matrices

e Derivative of vector w.r.t. matrix

* For any Mx1 vector y that is a function of an
NxL matrx X

e dy/dX isan MxNxL tensor

Y1

Ym
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X —

X12 X13

Xy Xz
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M X 2 X 3 tensor

dy _
dX |

ﬁj,k)th element =
dy; _

dxj,k

\_ Y,
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Calculus of Matrices

e Derivative of matrix w.r.t. matrix

* For any MxK vector Y that is a function of an
NxL matrx X

e dY /dX is an MxKxNxL tensor

Y =
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(1,))th element =

dy,, _
dx.

I, ]
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In general

* The derivative of an N, x N, x N5 x ... tensor
w.rttoan M; x M, x M; x ... tensor

* Isan N; XNy, XNy x ... xM;xM,xM;x...
tensor
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Compound Formulae

* letY=1(g(h(X)))

e Chain rule (note order of multiplication)

ay _ dh(X)" dg(h(X))" df (g(h(X))
dX  dX  dh(X)  dg(h(X))

* The # represents a transposition operation
— That is appropriate for the tensor
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Example

2=y - Al
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