MLSP

Machine Learning for Signal

Processing
Eigenfaces and Eigenrepresentations

Class 6. 16 Sep 2014

Instructor: Bhiksha Raj
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MLSP
Administrivia

* Project teams?

* Project proposals?
— Please send proposals to TA, and cc me

— Rahul Raj is no longer a TA

* Reminder: Assignment 1 due in ?? days
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Recall: Representing images

aboard Apollo space capsule Apollo Xi aboard Apollo space capsule Building Apollo space ship aboard Apollo space capsule.
1038 x 1280 - 142k 1280 x 1255 - 226k 1029 x 1280 - 128k 1280 x 1257 - 114k 1017 x 1280 - 130k
LIFE LIFE LIFE LIFE LIFE

Apollo Xi Apollo 10 space ship. w Splashdown of Apollo XI mission Earth seen from space during the  Apollo Xi
1228 x 1280 - 181k 1280 x 853 - 72k 1280 x 866 - 184k 1280 x 839 - 60k 844 x 1280 - 123k
EIEE LIFE LIFE LIFE LIFE

e

the moon as seen from Apollo 8 Apollo 11
1280 x 956 - 117k 1223 x 1280 - 214k 1280 x 1277 - 142k
LIFE LIFE LIFE LIFE LIFE

Apollo 8
1278 x 1280 - 74k

working on Apollo space project Apollo 8 Crew

968 x 1280 - 125k

* The most common element in the image:
background
— Or rather large regions of relatively featureless shading

— Uniform sequences of numbers
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Adding more bases

* Checkerboards with different variations

Image~ wy By + wW,B, +W3B3 +...

W =| Ws B=[B, B, Bs]

- BW ~ Image
W = pinv(B) Image ;
PROJECTION =BW  Getting closer at 625 bases!
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“Bases”
e T
B, B, B. B,

Image = w, B, +w,B, +w,B, +...

e “Bases” are the “standard” units such that all instances can be
expressed a weighted combinations of these units

* |deal requirements: Bases must be orthogonal

* Checkerboards are one choice of bases
— Orthogonal
— But not “smooth”

* Other choices of bases: Complex exponentials, Wavelets,
etc..
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Data specific bases?

* |Issue: All the bases we have considered so far are
data agnostic
— Checkerboards, Complex exponentials, Wavelets..
— We use the same bases regardless of the data we analyze

* Image of face vs. Image of a forest
* Segment of speech vs. Seismic rumble

 How about data specific bases

— Bases that consider the underlying data

e E.g.is there something better than checkerboards to describe
faces

* Something better than complex exponentials to describe music?

16 Sep 2014 11-755/18-797




MLSP

Vechiezaming for Sapal

The Energy Compaction Property

e Define “better”?

 The description

X =wB, +w,B, +w,B; +...+wB,

* The ideal:

A 12
X. ~W,B, +W,B, +...+ W.B, Error, =X - X,

Error, < Error,_,

— |f the description is terminated at any point, we should
still get most of the information about the data

 Error should be small
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Data-specific description of faces ™

I IS

-~
u
| ——

4 L

YR

* A collection of images

— All normalized to 100x100 pixels
* What is common among all of them?

— Do we have a common descriptor?
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A typical face
Q" lh h‘

The typical face

. ﬂ ’ ) ) ) ) ) 7

III

* Assumption: There is a “typical” face that captures most of
what is common to all faces
— Every face can be represented by a scaled version of a typical face
— We will denote this face as V
* Approximate every facefast = w,V

* Estimate V to minimize the squared error
— How? Whatis V?
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III

faces that captures most of all faces

Assumption: There are a set of K “typica

* Approximate every facefast = w¢, V,+ we, V, + we, Vo +0 +wp Vi
— V,is used to “correct” errors resulting from using only V. So on average
2 2
Hf — (W, ,1Vf ,1+Wf,2Vf,2)H <Hf — Wi ,1Vf 1”
— V;corrects errors remaining after correction with V,,
2 2
H =Wy Vg +We Vo, + WV 3)” < H f— (W Vi + W,V 2)”
— Andsoon..
- V=[V;V, V]
* Estimate V to minimize the squared error
— How? Whatis V?
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* Finding the best explanation of music M in terms of notes N

Also finds the score S of M in terms of N
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N =M Pinv(S

U=NS~M

N = ’) U= ’) N =M pinv(S)

* Finding the notes N given music M and score S
e Also finds best explanation of M in terms of S
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= Find the four notes and their score that generate the
closest approximation to M
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The same problem

Typical faces

@F A,

e HereV, W and U are ALL unknown and must be determined

— Such that the squared error between U and F is minimum

* For each face
- = Weyp Vit Wi, Vo +wey Vi o+ wiee Vi
* For the collection of faces: Fx VW
— Vis DxK andWis KxN

* Disthe no. of pixels, N, is the no. of faces in the set

— Find V and W such that | |F - VW/| |2 is minimized

14



Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Pixel 2

v

Pixel 1

* Each “point” represents a face in “pixel space”

16 Sep 2014 11-755/18-797 15



Abstracting the problem: MLSE
Finding the FIRST, typical face
\%

Pixel 2

v

Pixel 1

* Each “point” represents a face in “pixel space”
* Any “typical face” V is a vector in this space
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Abstracting the problem: MLSE
Finding the FIRST, typical face
\%

Pixel 2

v

Pixel 1

)

* Each “point” represents a face in “pixel space’
* The “typical face” V is a vector in this space

* The approximation w V for any face f is the projection of f onto V

* The distance between f and its projection w,V is the projection error for £
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

e FEvery face in our data will suffer error when
approximated by its projection on V

* The total squared length of all error lines is the total
squared projection error
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Abstracting the problem: MLSP
Finding the FIRST, typical face
v /"

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

N
[ ]
| \
W \ \
\ ‘\ ‘\
(Q\] \ \
[ A T
>< \\ ‘\ W x \‘ \‘
o - % \ b5 \ )
' \
\ V
v
VoA
Wy
>
Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face
V

AN

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!
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Abstracting the problem: MLSP
Finding the FIRST typical face

AN

Vi

Pixel 2

v

Pixel 1

* The problem of finding the first typical face V:
Find the V for which the total projection error is minimum!

* This “minimum squared error” V is our “best” first typical face
* |tis also the first Eigen face
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Formalizing the Problem: Error from "™

approximating a single vector

Approximating: x = wv

v

* Consider: approximating X = wv
— E.g xis a face, and “v” is the “typical face”
* Finding an approximation WV which is closest to x

— In a Euclidean sense

— Basically projecting x onto v
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Formalizing the Problem: Error from "™~

approximating a single vector

Approximating: x = wv

\\-;—- -------------------------------- > X -VVTX

N
7

* Assuming V is of unit length: X=w'x
2
error = x-X = x-w'x  squarederror= |x—w"x|

16 Sep 2014 11-755/18-797 25



MLSP

Error from approximating a single
vector

* Minimum squared approximation error from
approximating X as it as Wv

2
e(x) = Hx = WTXH

e Optimal value of w: w=v'x

16 Sep 2014 11-755/18-797 26



MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

X' X=X"W X=X W x+x"W'w'x
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MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

=X' X=X W'X=X"W'Xx+x"Ww'w'x
=1
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MLSP

Error from approximating a single
vector

* Error from projecting a vector X on to a vector
onto a unit vector v e(x)= Hx—waH2

e(x) = (x—WTx)T (X—WTX) = (xT —x'w' XX—WTX)

X' X=X"W X=X"W"'x+X"W'X

e(X) =x"x—x"w'x
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MLSP

Error from approximating a single
vector

e(X) = x'x — xTv.vTx
Y
Length of projection

This is the very familiar pythogoras’ theorem!!
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MLSP
Error for many vectors

~
7

* Error for one vector: e(X) =X' X=X W 'X
* Error for many vectors

E = Ze(xi) = Z(xiTxi —xiTWTxi) =D XX = D XiW'X

e Goal: Estimate vV to minimize this error!
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MLSP
Error for many vectors

~
7

X
* Total error: EZZXiTXi—ZXiTWTXi
i [

e Add constraint: viv=1
* Constrained objective to minimize:
E=>%%—-) X WX +/1(VTV—1)
i [
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Two Matrix Identities

e Derivative w.r.t v

dx'w'x dv'xx'v
dv dv

= 2XX'V

16 Sep 2014 11-755/18-797

MLSP
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MLSEP
Minimizing error

~
7

E = foxi —Z)X<iTWTxi +/1(VTV—1)

e Differentiating w.r.t v and equatingto O
—2) X X[ V+2iv=0 (ZX-XijzﬁV
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MLSP

Vichielzaming for SaraProcessing Gt

The correlation matrix

= AV

e The encircled term is the correlation matrix

T T
X =[x, X, ..x,] ZX‘X‘ =X =R

X = Data Matrix

£

Correlation

Transposed
Data Matrix

XT =

16 Sep 2014 11-755/18-797 35



MLSP
The best “basis”

~
7

* The minimum-error basis is found by solving
Rv = Av

* Vis an Eigen vector of the correlation matrix R
— A is the corresponding Eigen value
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MLSP

What about the total error?

E=> XX — > X/ W'X,

e X'v=VIX (inner product)
E=) XX =D VXXV =>xx V' (inxf jv
E=>Y XX, —V'RV=) XX -V Av=> XX, —AV'V
E=> x{x,—4

16 Sep 2014 11-755/18-797 37



MLSP

Minimizing the error
e The total erroris E =inTxi —A

* We already know that the optimal basis is an
Eigen vector

* The total error depends on the negative of the
corresponding Eigen value

 To minimize error, we must maximize A

* i.e. Select the Eigen vector with the largest
Eigen value
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MLSP

The typical face

‘L‘"’ ’f";"“
= &

The typical face

¥ e
- ¥

 Compute the correlation matrix for your data
— Arrange them in matrix X and compute R = XX'

 Compute the principal Eigen vector of R
— The Eigen vector with the largest Eigen value

* This is the typical face
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The second typical face o

* The first typical face models
some of the characteristics
of the faces

e Simply by scaling its grey level

e But the approximation has
error

 The second typical face
must explain some of this
error
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The second typical face o

The first typical face
ﬂ w ¥ e, ”h h‘ l;

' ! h& ﬁ The second typical face?
' | ,

e Approximation with only the first typical face
has error

* The second face must explain this error
* How do we find this this face?
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Solution: Iterate

e Get the “error”
faces by
subtracting the
first-level
approximation
from the
original image
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MLSP

Solution: Iterate

e Get the “error”
faces by
subtracting the
first-level
approximation
from the
original image

* Repeat the
estimation on
the “error”
Images

16 Sep 2014 11-755/18-797 43



Abstracting the problem: MLSE
Finding the second typical face

A a

E < ERROR
“ FACES

Pixel 2

v

Pixel 1

* Each “point” represents an error face in “pixel space”

* Find the vector V, such that the projection of these
error faces on V, results in the least error
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MLSP

Vichielzaming for SaraProcessing Gt

Minimizing error

A The same math applies
oy but now to the set
~ . ¢ ERROR of error data points
= W FACES
o
N
Pixel 1 .

E=>ele;—> efw'e, +A(vTv-1)
e Differentiating w.r.t v and equatingto O

-2) e/ v+2Av=0 (ZeieiT )v:/iv
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MLSP

Minimizing error

A The same math applies
oy but now to the set

i ﬂR of error data points
L FACES

Pixel 2

~
7

Pixel 1
* The minimum-error basis is found by solving

R.V, = AV, R, =) ee'

* V, is an Eigen vector of the correlation matrix R,
corresponding to the largest eigen value A of R,
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face

* But approximation with the two faces will still result in error

* So we need more typical faces to explain this error

* We can do this by subtracting the appropriately scaled version
of the second “typical” face from the error images and
repeating the process
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Solution: Iterate e

Error face Second-level error

e Get the second-
level “error”
faces by
subtracting the
scaled second
typical face from
the first-level
error

* Repeat the
estimation on
the second-level
“error” images

16 Sep 2014 11-755/18-797 48



MLSP

Vichielzaming for SaraProcessing Gt

An interesting property

* Each “typical face” will be orthogonal to all
other typical faces

— Because each of them is learned to explain what
the rest could not

— None of these faces can explain one another!
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MLSP

To add more faces

 We can continue the process, refining the
error each time

— An instance of a procedure is called “Gram-
Schmidt” orthogonalization

e OR... wecandoit all at once
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Typical faces

* Approximate every facefast =w; V,+w;, V, +.. + w; V.

e Here W,V and U are ALL unknown and must be determined
— Such that the squared error between U and M is minimum
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MLSP

With multiple bases

[ [/ [ [ 7T [/ 77 7 [ [/ [/ 7T 777 7

Assumption: all bases v, v, v;.. are unit length

Assumption: all bases are orthogonal to one another: Viij =0ifi!=]j
— We are trying to find the optimal K-dimensional subspace to project the data
— Any set of vectors in this subspace will define the subspace
— Constraining them to be orthogonal does not change this

le.if V=[v,v,v;..], VIV=I
— Pinv(V)=VT

Projection matrix for V= VPinv(V) = VVT
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MLSP

With multiple bases

vy < Representsa
K-dimensional subspace

* Projection for a vector x=W'x

e Error vector = X—X=X—VV'X

* Errorlength = g(x)=x"x—x"WTx
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With multiple bases

N

* Error for one vector:
* Error for many vectors

N
7

e(X) =x'x=x"W'x

E=> Xx{X,—> x{ WX

e Goal: Estimate V to minimize this error!

16 Sep 2014

11-755/18-797

MLSP
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Minimizing error
* With constraint VTV = |, objective to
minimize

E =D XX~ 2 X W, +trace(A(VTV 1))

— Note: now A is a diagonal matrix

— The constraint simply ensures that v'v = 1 for
every basis

e Differentiating w.r.t V and equatingto 0

St raavea
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MLSP

Finding the optimal K bases
RV = AV

 Compute the Eigendecompsition of the
correlation matrix

e Select K Eigen vectors
* But which K? K
. T
. Total error= E= in X _Z;/Ij
| J=

e Select K eigen vectors corresponding to the K
largest Eigen values
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Eigen Faces!

=l -}
LS
IER

Arrange your input data into a matrix X

e Compute the correlation R = XXT
e Solve the Eigen decomposition: RV = AV

* The Eigen vectors corresponding to the Klargest eigen values
are our optimal bases

 We will refer to these as eigen faces.
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How many Eigen faces

300x10000

10000x300 10000x10000

* How to choose “K” (hnumber of Eigen faces)

e Lay all faces side by side in vector form to form a matrix
— In my example: 300 faces. So the matrix is 10000 x 300

* Multiply the matrix by its transpose
— The correlation matrix is 10000x10000
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Eigen faces

[U,S] = eig(correlation)

4 . 0 . 0 | N T
L QO
0 4 0. 0 188
S = U= ‘g ‘gooo
(O
2D
. . . . . GJ GJ L
B O . O . 110000_ 00 50 100

 Compute the eigen vectors

— Only 300 of the 10000 eigen values are non-zero
e Why?

* Retain eigen vectors with high eigen values (>0)
— Could use a higher threshold

16 Sep 2014 11-755/18-797
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Eigen Faces

eigenfacel .
J eigenface2
RN ] : .
L O - ; | ,
Q9 ’ ! |
U=g & XX i . ‘
cC C 1
O O ,
2 D r m—
L QO L A

o
0 50 100 150 200 250 300 350 400 450 500

‘eig'enf-aceS

* The eigen vector with the highest eigen value is the first typical face

* The vector with the second highest eigen value is the second typical
face.

 Etc.
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Representation -

* The weights with which the eigen faces must
be combined to compose the face are used to
represent the face!
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one basis:
f =wv,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with one Eigenface:
f =wv,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

&

* Approximating a face with 10 eigenfaces:
f =w v, +W,v, +..W,V,,
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MLSP
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

* Approximating a face with 30 eigenfaces:

f =WV, +W,V, +...+ W,V +...+ W,y Vs,
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L
Energy Compaction Example

* One outcome of the “energy compaction
principle”: the approximations are
recognizable

| _ i |
* Approximating a face with 60 eigenfaces:

f =WV, +W,V, +. W Vg +. W Vo ..+ Wi Vg,
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How did | do this?

10
20
30
40
50
60
70
80

90

100 L H
10 20 30 40 50 60 70 80 90 100

* Hint: only changing weights assigned to Eigen faces..
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Class specificity
eigenfacel eigenface2

eigenface3

* The Eigenimages (bases) are very specific to
the class of data they are trained on
— Faces here

* They will not be useful for other classes

16 Sep 2014 11-755/18-797
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MLSP
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces

16 Sep 2014 11-755/18-797 69



MLSP
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
e With 1 basis

f =wyv,
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MLSE
Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 10 bases

f =wVv, +W,Vv, +...+W,V,,
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Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 30 bases

f =WV, +W,V, +...+ W,V +...+ W,y Vs,
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Class specificity

* Eigen bases are class specific

 Composing a fishbowl| from Eigenfaces
* With 100 bases

F =WV + WV, 4o A WiV e+ WagViag . WigoVi g
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MLSE
Universal bases

e Universal bases..

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

* End up looking a lot like discrete cosine transforms!!!!

 DCTs are the best “universal” bases
— If you don’t know what your data are, use the DCT
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SVD instead of Eigen

S=300x300| [V=300x300
U=10000x300

eigenfacel
eigenface2
.
o

Do we need to compute a 10000 x 10000 correlation matrix and
then perform Eigen analysis?
— Will take a very long time on your laptop

* SVD

— Only need to perform “Thin” SVD. Very fast

* U =10000 x 300

— The columns of U are the eigen faces!
— The Us corresponding to the “zero” eigen values are not computed

* S=300x300
* V=300x300
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MLSP

Vichielzaming for SaraProcessing Gt

Using SVD to compute Eigenbases

[U, S, V] = SVD(X)

* U will have the Eigenvectors

e Thin SVD for 100 bases:
[U,S,V] = svds(X, 100)
e Much more efficient
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MLSP

Eigen Decomposition of data

* Nothing magical about faces — can be applied
to any data.

— Eigen analysis is one of the key components of
data compression and representation

— Represent N-dimensional data by the weights of
the K leading Eigen vectors
* Reduces effective dimension of the data from N to K
* But requires knowledge of Eigen vectors
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MLSP
Eigen decomposition of what?

* Eigen decomposition of the correlation matrix

* |s there an alternate way?

16 Sep 2014 11-755/18-797 78



MLSP

Linear vs. Affine

e The model we saw

— Approximate every face f as
t =we Vi+we, V, +o+we Vi

— Linear combination of bases

* |f you add a constant
f — Wf,l V1+ Wf}z VZ —l_ + Wf,k Vk + m
— Affine combination of bases
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MLSP
Estimation with the constant

e Estimate
t =w, Vi+tw, V,+.+w, V., +m

* Lets do this incrementally first:
. fr~m
— For every face
— Find m to optimize the approximation
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MLSP
Estimation with the constant

Estimate
f ~m
— for every f!

Error over all faces E = Y ||f —m||

Minimizing the error with respect to m, we
simply get

—m = %fo

The mean of the data
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Vichielzaming for SaraProcessing Gt

Estimation the remaining

 Same procedure as before:

— Remaining “typical faces” must model what the constant m
could not

e Subtract the constant from every data point

—f=f-m
* Now apply the model:
- f= Weq Vit W) Vot + Wek Vi

e This is just Eigen analysis of the “mean-normalized”
data

— Also called the “centered” data
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Estimating the Affine model

f — Wf,l V1+ Wf,Z V2 _I_... + Wf,k Vk + m
 First estimate the mean m
GO
m= —
N
f

* Compute the correlation matrix of the “centered”
dataf =f —m

— C=3 TS —m)(f —m)T

— This is the covariance matrix of the set of f
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Estimating the Affine model

f — Wf,1 V1+ Wf,Z VZ +... + Wf,k Vk + m
* First estimate the mean m
DN
m= —
N
7
 Compute the covariance matrix
— C=X,(f —m)(f —m)T

 Eigen decompose!

CV =AV

 The Eigen vectors corresponding to the top k Eigen values give us
the bases V,
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Properties of the affine model

* The basesV,, V, ,..,V, are all orthogonal to one
another

— Eigen vectors of the symmetric Covariance matrix

* But they are not orthogonal to m

— Because m is an unscaled constant

* We could jointly estimate all V,, V, ...V, and m
by minimizing
Yrllf — Gy wyiVi + m)||*+trace(A(V'V — 1))
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Linear vs. Affine

* The model we saw

— Approximate every face f as
tf =we V,+ We) V, +..+ Wil Vi

— The Karhunen Loeve Transform
— Retains maximum Energy for any order k

* |f you add a constant
f =wg Vit we Vo T+ we Vi +m
— Principal Component Analysis
— Retains maximum Variance for any order k
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MLSP

How do they relate

* Relationship between correlation matrix and
covariance matrix

R=C+mm'

* Karhunen Loeve bases are Eigen vectors of R
* PCA bases are Eigen vectors of C

* How do they relate
— Not easy to say..
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The Eigen vectors

T WMW*V

. %w NM

* The Eigen vectors of C are the major axes of
the ellipsoid Cv, where v are the vectors on
the unit sphere
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The Eig?n vectors

mmT

 The Eigen vectors of R are the major axes of
the ellipsoid Cv+ mm'v

* Note that mm’ has rank 1 and mm'vis a line
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The Eig?n vectors

mmT

* The principal Eigenvector of R lies between the principal Eigen vector of C
and m

m
e, =ae. +(1-a)— O<a<l
[m]
e Similarly the principal Eigen value
Ag =ad:. +(Ll—a)|[m &

* Similar logic is not easily extendable to the other Eigenvectors, however
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MLSP

Eigenvectors

N

v

Pixel 1

Turns out: Eigenvectors of the correlation matrix represent the

major and minor axes of an ellipse centered at the origin which
encloses the data most compactly

e The SVD of data matrix X uncovers these vectors
o KLT
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Eigenvectors

N

N

Pixel 2

v

Pixel 1

* Turns out: Eigenvectors of the covariance represent the major and
minor axes of an ellipse centered at the mean which encloses the
data most compactly

e PCA uncovers these vectors

* In practice, “Eigen faces” refers to PCA faces, and not KLT faces
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What about sound?

Finding Eigen bases for speech signals:

Look like DFT/DCT

Or wavelets

0 4
0.1 ]
-0.2 : :
50 0 50 100 150
0.2 0.2
01 ] 04 |
0 4
0 4
-01 4
-0.1 ] 02 |
-0.2 - : -0.3 - :
0 50 100 150 0 50 100 150

DFTs are pretty good most of the time
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Eigen Analysis

e Can often find surprising features in your data
* Trends, relationships, more

e Commonly used in recommender systems

* An interesting example..

16 Sep 2014 11-755/18-797 94



Eigen Analysis

Field Expenments on 08/31

Figurel. Experiment setup @Wean Hall mechanical
space. Pipe with arrow indicates a 10” diameter hot
water pipe carrying pressurized hot water flow, on
which piezoelectric sensors are installed every 10 ft.
A National instruments data acquisition system is
used to acquire and store the data for later

processing.
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Figure 2. Damage detection results compared with
conventional methods. Top: Ground truth of whether
the pipe is damaged or not. Middle: Conventional
method only captures temperature variations, and
shows no indication of the presence of damage.
Bottom: The SVD method clearly picks up the steps

where damage are introduced and removed.

* Cheng Liu’s research on pipes..
e SVD automatically separates useful and uninformative

features
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Eigen Analysis

e But for all of this, we need to “preprocess”
data

* Eliminate unnecessary aspects

— E.g. noise, other externally caused variations..
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