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Statistical Modelling and Latent
Structure

Much of statistical modelling attempts to identify /atent structure in
the data

— Structure that is not immediately apparent from the observed data

— But which, if known, helps us explain it better, and make predictions
from or about it

Clustering methods attempt to extract such structure from
proximity
— First-level structure (as opposed to deep structure)

We will see other forms of latent structure discovery later in the
course
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Clustering

— Clustering is the determination of
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 What is clustering

— Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-
group variability and high between-
group variability)

* How is it done
— Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of
some kind

— The objective function used affects
the nature of the discovered clusters

* E.g. Euclidean distance vs.
» Distance from center
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Why Clustering

e Automatic grouping into “Classes”
— Different clusters may show different behavior

* Quantization

— All data within a cluster are represented by a
single point

* Preprocessing step for other algorithms
— Indexing, categorization, etc.
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Finding natural structure in data
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* Find natural groupings in data for further analysis
 Discover latent structure in data
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Some Applications of Clustering

* Image segmentation
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Representation: Quantization

TRAINING QUANTIZATION

Quantize every vector to one of K (vector) values

What are the optimal K vectors? How do we find them? How do
we perform the quantization?

LBG algorithm 13
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Representation: BOW

PSY - GANGNAM STYLE (ZHtAELY). .

 How to retrieve all music videos by this guy?

e Build a classifier
— But how do you represent the video?
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Representation: BOW

PSY - GANGNAM STYLE (Z'AELR)... [‘

o e _ Representation: Each number is the
Training: Each point is a video frame #frames assigned to the codeword

* Bag of words representations of
video/audio/data
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Obtaining “Meaningful” Clusters

* Two key aspects:

— 1. The feature representation used to characterize
your data

— 2. The “clustering criteria” employed
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Clustering Criterion

* The “Clustering criterion” actually has two
aspects

* Cluster compactness criterion

— Measure that shows how “good” clusters are
* The objective function

* Distance of a point from a cluster
— To determine the cluster a data vector belongs to



MLSP

“Compactness” criteria for clustering

* Distance based measures
— Total distance between each ]

element in the cluster and
every other element in the
cluster
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“Compactness” criteria for clustering
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— Total distance between each
element in the cluster and %
every other element in the
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farthest points in the cluster
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“Compactness” criteria for clustering
Distance based measures @
— Total distance between each
element in the cluster and %
every other element in the
cluster
— Distance between the two ‘
farthest points in the cluster :
— Total distance of every

element in the cluster from the :

centroid of the cluster @
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“Compactness” criteria for clustering

e Distance based measures @

— Total distance between each
element in the cluster and every %
other element in the cluster

— Distance between the two farthest
points in the cluster

— Total distance of every element in
the cluster from the centroid of the
cluster

N

— Distance measures are often
weighted Minkowski metrics @
dist = 3w, —by|" +W,|a, —b,[" +...4+ Wy [y by [
- 1‘a1 bl‘ + 2‘ 2 2‘ +.o+ M‘ M M‘ %
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Clustering: Distance from cluster

 How faris a data point from a
cluster?

— Euclidean or Minkowski distance
from the centroid of the cluster
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Clustering: Distance from cluster
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from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution
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Clustering: Distance from cluster

 How faris a data point from a
cluster?
— Euclidean or Minkowski distance
from the centroid of the cluster

— Distance from the closest point in
the cluster

— Distance from the farthest point in
the cluster

— Probability of data measured on
cluster distribution

— Fit of data to cluster-based
regression

i
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Optimal clustering: Exhaustive enumeration

e All possible combinations of data must be evaluated

— |If there are M data points, and we desire N clusters, the
number of ways of separating M instances into N clusters is

13Ny
D ( | J(N i)

— Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated
for every one of these, and the best one chosen

* This is the only correct way of optimal clustering

— Unfortunately, it is also computationally unrealistic
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Not-quite non sequitur: Quantization

Signal Value Bits | Mapped to
S >=3.75v 11 | 3 * const
3.75v>S >=2.5v 10 | 2 * const
2.5v>S >=1.25v 01 | 1*const
1.25v > S >= Qv 0 0

AR RN

Analog value (arrows are quantization levels)

Probability of analog value

e Linear quantization (uniform quantization):
— Each digital value represents an equally wide range of analog values
— Regardless of distribution of data
— Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitur: Quantization
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* Non-Linear quantization:

%) Signal Value Bits Mapped to
> S >= 4y 11 4.5

= 4v> S >= 25y 10 [3.25

E 2.5v>S>=1v 01 1.25

S 1.0v > S >=0v 0 0.5

Fa

Ne

g THTinntiT i

| -

A Analog value (arrows are quantization levels)

— Each digital value represents a different range of analog values

* Finer resolution in high-density areas

* Mu-law / A-law assumes a Gaussian-like distribution of data

— Digital-to-analog conversion represented by a “non-uniform” table

9 Oct 2014
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Non-uniform quantization

/N

Analog value

Probability of analog value

e |f data distribution is not Gaussian-ish?
— Mu-law / A-law are not optimal

— How to compute the optimal ranges for quantization?
* Or the optimal table
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The Lloyd Quantizer

Probability of analog value

RN T T

Analog value (arrows show quantization levels)

* Lloyd quantizer: An iterative algorithm for computing optimal
guantization tables for non-uniformly distributed data

* Learned from “training” data

9 Oct 2014 34
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Lloyd Quantizer

 Randomly initialize
quantization points

T 1+ 1 7 — Right column entries of
guantization table
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Lloyd Quantizer

 Randomly initialize
quantization points

— Right column entries of
guantization table

)

* Assign all training points to
the nearest quantization
point

— Draw boundaries

VAN
VAN

T 1
Tyt

/\
I\
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Lloyd Quantizer

 Randomly initialize
quantization points

— Right column entries of
guantization table

A
* Assign all training points to
/\ the nearest quantization
I R O point

— Draw boundaries

* Reestimate quantization
points

(A I B
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Lloyd Quantizer

 Randomly initialize
quantization points
/\ — Right column entries of
T P ()

guantization table

* Assign all training points to
the nearest quantization
point

— Draw boundaries

Reestimate quantization
/\ points
Mo Nt o e ]

* |terate until convergence
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Generalized Lloyd Algorithm: K-means clustering

K means is an iterative algorithm for clustering vector
data

— McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
281-297

* General procedure:

— Initially group data into the required number of clusters
somehow (initialization)

— Assign each data point to the closest cluster
— Once all data points are assigned to clusters, redefine clusters

— [terate



K—means

Problem: Given a set of data
vectors, find natural clusters

Clustering criterion is scatter:
distance from the centroid

Every cluster has a centroid

The centroid represents the cluster

Definition: The centroid is the
weighted mean of the cluster
Weight = 1 for basic scheme

MLSP
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cluster

Z

iecluster

D WX
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K—means

1. Initialize a set of centroids
randomly

41
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K—means

Initialize a set of centroids
randomly

For each data point x, find the ,.@1:"..,

distance from the centroid for
each cluster ) ., P

d = distance(X, M, ) “

cluster



K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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For each data point x, find the
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Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the

distance from the centroid for o

.
.
.
@ _e*
.*

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

.
.
Ry L]

.

** a
.
.*
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Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster ®
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cluster cluster)
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*  Cluster for which dj s IS
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Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

©d = distance(X, M, q.r)

cluster

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

When all data points are
clustered, recompute centroids

i iecluster
iecluster

mcluster = ZWI |€Z
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d = distance(x,m
Put data point in the cluster of the

closest centroid

»  Cluster for which d g IS
minimum

When all data points are
clustered, recompute centroids

cluster cluster)

mcluster = ZWI |GZ

i iecluster
iecluster

If not converged, go back to 2

MLSP
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K-Means comments

e The distance metric determines the clusters

— In the original formulation, the distance is L, distance

* Euclidean norm, w; =1

_ 1
distance, .. (X, My o) =l X—M Metuster = Z X

cluster cluster ” 2 N ]
cluster iecluster

— If we replace every x by m (x), we get Vector

Quantization

cluster

 K-means is an instance of generalized EM

* Not guaranteed to converge for all distance
metrics
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Initialization

e Random initialization

* Top-down clustering

— Initially partition the data into two (or a small
number of) clusters using K means

— Partition each of the resulting clusters into two
(or a small number of) clusters, also using K
means

— Terminate when the desired number of clusters
is obtained
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K-Means for Top—Down clustering

Start with one cluster

9 Oct 2014
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K-Means for Top—Down clustering

Start with one cluster O
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1.

2.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

9 Oct 2014
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2.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids
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1.

2.

3.

K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

9 Oct 2014
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

o Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O

9 Oct 2014
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

— Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

lterate Kmeans until convergence %
O

If the desired number of clusters is not
obtained, return to 2

9 Oct 2014 61
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Non-Euclidean clusters

e Basic K-means results in good clusters in
Euclidean spaces

— Alternately stated, will only find clusters that are
“good” in terms of Euclidean distances

* Will not find other types of clusters

9 Oct 2014 62
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Non-Euclidean clusters

A

f(byl) -> [x.y,z] =
X = X | N

y = y 05 b‘
Z = a(x?+y?)

* For other forms of clusters we must modify the di1sf;ance measure
— E.g. distance from a circle

 May be viewed as a distance in a higher dimensional space
— |.e Kernel distances
— Kernel K-means

* Other related clustering mechansims:

— Spectral clustering
* Non-linear weighting of adjacency

— Normalized cuts.. -



The Kernel Trick

f(x.y]) -> [x.y.z] 1
X=x |

y=y R
Z = a(x?+y?)

slas
1

* Transform the data into a synthetic higher-dimensional space where
the desired patterns become natural clusters

— E.g. the quadratic transform above
* Problem: What is the function/space?

* Problem: Distances in higher dimensional-space are more expensive
to compute

— Yet only carry the same information in the lower-dimensional space
9 Oct 2014 64
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Distance in higher-dimensional space

* Transform data X through a possibly unknown
function ®(X) into a higher (potentially infinite)
dimensional space

— Z = O(X)

 The distance between two points is computed in
the higher-dimensional space

— d(Xy, Xo) = |1Z5- 25| |2 = [ [D(X;) = D(X,) ] |2

* d(Xy, X5) can be computed without computing z

— Since it is a direct function of X; and X,
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Distance in higher-dimensional space

* Distance in lower-dimensional space: A combination of
dot products

— 12,- 2,11 = (24- 2,)"(24- 2,) = 2,.2, + 2,.2,-2 2,.Z,

* Distance in higher-dimensional space

— d(Xy, X;) =[ [D(Xy) = D(X,) | |
= D(Xy). D(Xq) + D(X,). D(X5)-2 D(Xy). D(X,)

* d(Xy, X,) can be computed without knowing ®(X) if:

— O(X,). D(X,) can be computed for any X; and X, without
knowing ®(.)

9 Oct 2014 66
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The Kernel function

* Akernel function K(X;,X,) is a function such that:
— K(X4,X;) = O(X,). D(X,)

* Once such a kernel function is found, the distance
in higher-dimensional space can be found in
terms of the kernels
— d(Xy, %) =] |®(X;) = D(X,) | |2

= O(X;). D(X;) + D(X,). D(X,)-2 D(Xy). D(X,)
= K(X(,X4) + K(X,,X,) - 2K(X4,X5)

* But what is K(Xy,X,)?
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A property of the dot product

* ForanyvectorVv,Vv'v=||Vv]||? >=0

— This is just the length of v and is therefore non-
negative

* Foranyvectoru=2.a. Vv, ||u||?>=0
=> (Z,a V)T(Za V) >= 0
=> 2. ZJ aav.v, >=0

* This holds for ANY real {a,, a,, ...}
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The Mercer Condition

e If z=d(X) is a high-dimensional vector derived
from X then for all real {a,, a,, ...} and any set {z,,
Z,y, oo } = {DO(X,), D(X,),...}

- xnaaz.2 >=0

— 2, 2,8 8, D(X;).D(x;) >=0

I

o If K(X,X,) = O(X;). D(X,)
=> 2, 2, 8, 8; K(x;,%5) >=0

A

* Any function K() that satisfies the above condition
is a valid kernel function
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The Mercer Condition

o K(X,X5) = D(X,). D(X,)
=>2%; 2,8 & K(X;,%;) >=0

i <YM |

* A corollary: If any kernel K(.) satisfies the Mercer
condition

d(Xy, X,) = K(X,X;) + K(X,,X,) - 2K(X{,X,)
satisfies the following requirements for a
“distance”

—d(x,x)=0
—d(x,y)>=0
— d(x,w) + d(w,y) >=d(x,y)




Typical Kernel Functions
Linear: K(X,y) =X'y +C
Polynomial K(X,y) = (ax'y + c)"
Gaussian: K(X,y) = exp(-| |X-y| |*/c?)
Exponential: K(X,y) = exp(-| |x-y]| |/\)
Several others

— Choosing the right Kernel with the right
parameters for your problem is an artform

MLSP
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Kernel K-means

K(xy)=(xTy+c)? =

* Perform the K-mean in the Kernel space

— The space of Z = ®(X)

* The algorithm..

9 Oct 2014 72
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
Mojuster = 7 Z(D(XI)

N cluster iecluster

Alternately the weighted average

m

> WO(x)=C > wd(x)

cluster —
W| iecluster Iecluster

iecluster
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The mean of a cluster

The average value of the points in the cluster computed in the
high-dimensional space

1
mcluster = N Z(D(XI)

cluster iecluster

RECALL: We may never actually be able to compute this mean because

D(x) is not known

Alternately the weighted average

m

> WO(x)=C > wd(x)

cluster —
W| iecluster Iecluster

iecluster
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K-means
* Initialize the cluster.s with a M, = ZW D(X;)
random set of K points ZW, iccluster
—  Cluster has 1 point ecluster

 For each data point X, find the closest cluster

I ©(x)—m

2
cluster ”

cluster(x) = min d(X, cluster) = min

cluster cluster

d(x, cluster) =[| @(X) — My ||2=(<1>(X)—C ZWiqD(Xi)j (CD(X)—C ZWi(D(Xi)j

iecluster iecluster

Zch(x)Tcp(x)_zc > wo(x) D(x,)+C* Zwiwjd)(xi)TCD(X,-)J

iecluster iecluster jecluster

=K(x,X)-2C > wWK(Xx)+C* > > ww,K(x;,X;)

iecluster iecluster jecluster

Computed entirely using only the kernel function!
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K—means

1. Initialize a set of clusters
randomly

76



MLSP
K—means

1. Initialize a set of clusters
randomly

The centroids are virtual:
we don't actually compute
them explicitly!

1
mcluster = Z Wi Xi

§ Wi iecluster

iecluster

77



K—means

1. Initialize a set of clusters
randomly

2. For each data point x, find the
distance from the centroid for

each cluster ¢

©d = distance(X, M, q.r)

cluster

dcluster:K(X’X)_ZC Z WiK(Xi)(i)'|_C2 Z

»
Q'.

]
-
o ., v,

1]
“%,
Y
L4 * a,
oy
Y
v
oy

> wwK(x;,X;)

iecluster iecluster jecluster

‘@
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for K
each cluster @
*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

.
.
.

o* e,
o N
. 0
. .
. N
N
.
N
N
N
e
N
0
.
"
0
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the

distance from the centroid for o

.
.
.
@ _e*
.*

each cluster ®

dcluster — diStance(X’ mcluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster ®

*d = distance(x, m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

o d = distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum
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K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

©d = distance(X, M, q.r)

cluster

Put data point in the cluster of the
closest centroid

*  Cluster for which dj s IS
minimum

When all data points are
clustered, recompute centroids

mcluster = ZWI |€Z

i iecluster
iecluster

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
Inner products in it
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Kernel K—means

Initialize a set of clusters
randomly

For each data point x, find the
distance from the centroid for
each cluster

* d

= distance(x,m

cluster cluster)

Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

IS

cluster

When all data points are
clustered, recompute centroids

Meyster = ZW. |EZ

i iecluster
iecluster

If not converged, go back to 2

We do not explicitly compute the
means

May be impossible — we do not
know the high-dimensional
space

We only know how to compute
Inner products in it
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How many clusters?

* Assumptions:

— Dimensionality of kernel space > no. of clusters

— Clusters represent separate directions in Kernel spaces

* Kernel correlation matrix K
— Kijj = K(X;,X;)

* Find Eigen values A and Eigen vectors e of kernel
matrix

— No. of clusters = no. of dominant A; (17e;) terms
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Spectral Methods

I” |”

“Spectral” methods attempt to find “principa
subspaces of the high-dimensional kernel space
Clustering is performed in the principal subspaces
— Normalized cuts

— Spectral clustering

nvolves finding Eigenvectors and Eigen values of
Kernel matrix

~ortunately, provably analogous to Kernel K-
means
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Other clustering methods

* Regression based clustering
* Find a regression representing each cluster

* Associate each point to the cluster with the
best regression

— Related to kernel methods

9 Oct 2014

90



MLSP

Clustering..

 Many many other variants
 Many applications..

* Important: Appropriate choice of feature

— Appropriate choice of feature may eliminate need
for kernel trick..

— Google is your friend.



