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Key Topics in this Lecture 

• Basics – Component-based representations 

– Overcomplete and Sparse Representations,  

– Dictionaries 
 

• Pursuit Algorithms 
 

• How to learn a dictionary 
 

• Why is an overcomplete representation 
powerful? 
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Representing Data 

Dictionary (codebook) 
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Representing Data 

Atoms Dictionary 
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Representing Data 

Atoms Dictionary 

Each atom is a basic unit that can 
be used to “compose” larger units. 
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Representing Data 

Atoms 

6 Sparse and Overcomplete Representations 



Representing Data 

Atoms 
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Representing Data 

Atoms 
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Representing Data 
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Representing Data 
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Representing Data 
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Representing Data 

6.44 
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12.19 
 

4.00 

9.12 

0.02 

0.01 

…………. 
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Representing Data 

w1 

…………. 
 

w6 

w4 

w3 

w2 

w5 

w7 
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Overcomplete Representations 

• What is the dimensionality of the input 
image? (say 64x64 image) 

 

 

• What is the dimensionality of the dictionary? 
(each image = 64x64 pixels) 

 

 

 4096 
 

 N x 4096 
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Overcomplete Representations 

• What is the dimensionality of the input 
image? (say 64x64 image) 

 

 

• What is the dimensionality of the dictionary? 
(each image = 64x64 pixels) 

 

 

 4096 
 

 N x 4096 
 

??? 
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Overcomplete Representations 

• What is the dimensionality of the input 
image? (say 64x64 image) 

 

 

• What is the dimensionality of the dictionary? 
(each image = 64x64 pixels) 

 

 

 4096 
 

 N x 4096 
 

VERY LARGE!!! 
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Overcomplete Representations 

• What is the dimensionality of the input 
image? (say 64x64 image) 

 

 

• What is the dimensionality of the dictionary? 
(each image = 64x64 pixels) 

 

 

 4096 
 

 N x 4096 
 

VERY LARGE!!! 

If N > 4096 (as it likely is) 
 we have an overcomplete representation  
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Overcomplete Representations 

• What is the dimensionality of the input 
image? (say 64x64 image) 

 

 

• What is the dimensionality of the dictionary? 
(each image = 64x64 pixels) 

 

 

 4096 
 

 N x 4096 
 

VERY LARGE!!! 

More generally: 
 

If #(basis vectors) > dimensions of input 
 

 we have an overcomplete representation 
  

18 Sparse and Overcomplete Representations 



Representing Data 

= 
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Representing Data 

= 
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Representing Data 

= D α X 

Input 
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Representing Data 

= D α X 

Unknown 

Input 
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Quick Linear Algebra Refresher 

• Remember, #(Basis Vectors)= #unknowns     

 D.α = X 

Basis 
Vectors 

Input data 

Unknowns 
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Quick Linear Algebra Refresher 

• Remember, #(Basis Vectors)= #unknowns     

  

 

Basis 
Vectors 

Input data 

Unknowns 

When can we solve for α? 

D.α = X 
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Quick Linear Algebra Refresher 

 

• When #(Basis Vectors)  = dim(Input Data), we 
have a unique solution 

• When #(Basis Vectors)  < dim(Input Data), we 
may have no solution 

• When #(Basis Vectors)  > dim(Input Data), we 
have infinitely many solutions 

 

 

D.α = X 
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Quick Linear Algebra Refresher 

 

• When #(Basis Vectors)  = dim(Input Data), we 
have a unique solution 

• When #(Basis Vectors)  < dim(Input Data), we 
may have no solution 

• When #(Basis Vectors)  > dim(Input Data), we 
have infinitely many solutions 

 

 

D.α = X 
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Our Case 



Overcomplete Representations 

#(Basis Vectors)  > dimensions of the input 
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Overcomplete Representation 

= D α X 

Unknown 

#(Basis Vectors)  > dimensions of the input 
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Overcomplete Representations 

• Why do we use them? 

• How do we learn them? 
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Overcomplete Representations 

• Why do we use them?  

– A more natural representation of the real world 

– More flexibility in matching data 

– Can yield a better approximation of the statistical 
distribution of the data.  

• How do we learn them? 
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Overcompleteness and Sparsity 

• To solve an overcomplete system of the type: 

 
 

• Make assumptions about the data. 

• Suppose, we say that X is composed of no 
more than a fixed number (k) of “bases” from 
D (k ≤ dim(X)) 
– The term “bases” is an abuse of terminology.. 

• Now, we can find the set of k bases that best 
fit the data point, X. 

D.α = X 
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Representing Data 

Using bases that we 
know… 

But no more than k=4 bases 
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Overcompleteness and Sparsity 

Atoms 

But no more than k=4 bases 
are “active” 
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Overcompleteness and Sparsity 

Atoms 

But no more than k=4 bases 
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No more than 4 bases 

= D 

α 

X 
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0 
0 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 



No more than 4 bases 

= D 

α 

X 
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0 
0 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

ONLY THE a COMPONENTS 
CORRESPONDING 
TO THE 4 KEY 
DICTIONARY ENTRIES  
ARE NON-ZERO 



No more than 4 bases 

= D 

α 

X 
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0 
0 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

ONLY THE a COMPONENTS 
CORRESPONDING 
TO THE 4 KEY 
DICTIONARY ENTRIES  
ARE NON-ZERO 

MOST OF a IS ZERO!! 
 
a IS SPARSE 



Sparsity- Definition 

• Sparse representations are representations 
that account for most or all information of a 
signal with a linear combination of a small 
number of atoms. 

 
(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html) 
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The Sparsity Problem 

• We don’t really know k 

• You are given a signal X 

• Assuming X was generated using the 
dictionary, can we find α that generated it?  
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The Sparsity Problem 

• We want to use as few basis vectors as 
possible to do this. 

 



Min
a

a
0

s.t. X Da

 
 
 
 
 
 
 

40 Sparse and Overcomplete Representations 



The Sparsity Problem 

• We want to use as few basis vectors as 
possible to do this. 

 



Min
a

a
0

s.t. X Da
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Counts the number of non-
zero elements in α 



The Sparsity Problem 

• We want to use as few basis vectors as 
possible to do this. 

 
 
 
 
 
 
 
 



Min
a

a
0

s.t. X Da

How can we solve the above? 
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Obtaining Sparse Solutions 

• We will look at 2 algorithms: 

– Matching Pursuit (MP) 

– Basis Pursuit (BP) 
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Matching Pursuit (MP) 

• Greedy algorithm 

• Finds an atom in the dictionary that best 
matches the input signal 

• Remove the weighted value of this atom from 
the signal 

• Again, find an atom in the dictionary that best 
matches the remaining signal. 

• Continue till a defined stop condition is 
satisfied. 
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Matching Pursuit 

• Find the dictionary atom that best matches 
the given signal. 

Weight = w1 
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Matching Pursuit 

• Remove weighted image to obtain updated 
signal 

Find best match for 
this signal from the 
dictionary 
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Matching Pursuit 

• Find best match for updated signal 
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Matching Pursuit 

• Find best match for updated signal 

Iterate till you reach a stopping condition, 
norm(ResidualInputSignal) < threshold 
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Matching Pursuit 

From http://en.wikipedia.org/wiki/Matching_pursuit 
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Matching Pursuit 

• Problems ??? 
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Matching Pursuit 

• Main Problem 

– Computational complexity  

– The entire dictionary has to be searched at every 
iteration 
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Comparing MP and BP 

Matching Pursuit Basis Pursuit 

Hard thresholding 
 
 
   

Greedy optimization at 
each step 

Weights obtained using 
greedy rules 

(remember the equations) 
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Basis Pursuit (BP) 

• Remember,``` 

 
 
 
 
 
 
 



Min
a

a
0

s.t. X Da
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Basis Pursuit 

• Remember, 

 
 
 
 
 
 
 



Min
a

a
0

s.t. X Da

In the general case, this is intractable 
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Basis Pursuit 

• Remember, 

 
 
 
 
 
 
 



Min
a

a
0

s.t. X Da

In the general case, this is intractable 
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Requires combinatorial optimization 



Basis Pursuit 

• Replace the intractable expression by an 
expression that is solvable 

 
 
 
 
 
 
 



Min
a

a
1

s.t. X Da
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Basis Pursuit 

• Replace the intractable expression by an 
expression that is solvable 

 
 
 
 
 
 
 



Min
a

a
1

s.t. X Da
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This holds when D obeys the 
Restricted Isometry Property. 



Basis Pursuit 

• Replace the intractable expression by an 
expression that is solvable 

 
 
 
 
 
 
 



Min
a

a
1

s.t. X Da
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Constraint 

Objective 



Basis Pursuit 

• We can formulate the optimization term as: 

 
 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}
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Constraint Objective 



Basis Pursuit 

• We can formulate the optimization term as: 

 
 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}

λ is a penalty term on the non-zero elements 
and promotes sparsity 
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Basis Pursuit 

• We can formulate the optimization term as: 

 
 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}

λ is a penalty term on the non-zero elements 
and promotes sparsity 

Equivalent to LASSO; for more details, see this 
paper by Tibshirani 
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Basis Pursuit 

• There are efficient ways to solve the LASSO 
formulation. [Link to Matlab code] 
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http://www-stat.stanford.edu/~tibs/glmnet-matlab/


Comparing MP and BP 

Matching Pursuit Basis Pursuit 

Hard thresholding 
 
 
   

Soft thresholding 

Greedy optimization at 
each step 

Global optimization 

Weights obtained using 
greedy rules 

Can force N-sparsity 
with appropriately 

chosen weights 

(remember the equations) 
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General Formalisms 

• L0 minimization 

• L0 constrained optimization 

 

 

• L1 minimization 

• L1 constrained optimization 
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a

a
a

DXts

Min

..

0

a

a
a

DXts

Min

..

1

Cts

XMin





0

2

2

.. a

a
a

D

Cts

XMin





1

2

2

.. a

a
a

D



Many Other Methods.. 

• Iterative Hard Thresholding  (IHT) 

• CoSAMP 

• OMP 

• … 
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Applications of Sparse Representations 

• Many many applications 
– Signal representation 

– Statistical modelling 

– .. 
 

• Two extremely popular signal processing 
applications: 
– Compressive sensing 

– Denoising 
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Compressive Sensing 

• Recall the Nyquist criterion? 

• To reconstruct a signal, you need to sample at 
twice the maximum frequency of the original 
signal 
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Compressive Sensing 

• Recall the Nyquist criterion? 

• To reconstruct a signal, you need to sample at 
twice the frequency of the original signal 

• Is it possible to reconstruct signals when they 
have not been sampled so as to satisfy the 
Nyquist criterion? 
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Compressive Sensing 

• Recall the Nyquist criterion? 

• To reconstruct a signal, you need to sample at 
twice the frequency of the original signal 

• Is it possible to reconstruct signals when they 
have not been sampled so as to satisfy the 
Nyquist criterion? 

• Under specific criteria, yes!!!! 
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Compressive Sensing 

• What criteria? 
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Compressive Sensing 

• What criteria? 

 

 

 

Sparsity! 
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Compressive Sensing 

• What criteria? 

 

 

• Exploit the structure of the data 

• Most signals are sparse, in some domain 

Sparsity! 
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Applications of Sparse Representations 

• Two extremely popular applications: 

– Compressive sensing 

– Denoising 
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Applications of Sparse Representations 

• Two extremely popular applications: 

– Compressive sensing 

– Denoising  
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Denoising 

• As the name suggests, remove noise! 

75 Sparse and Overcomplete Representations 



Denoising 

• As the name suggests, remove noise! 

• We will look at image denoising as an example 
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Image Denoising 

• Here’s what we want 
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Image Denoising 

• Here’s what we want 

78 Sparse and Overcomplete Representations 



Image Denoising 

• Here’s what we want 
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Denoising 

• As the name suggests, remove noise! 

• We will look at image denoising as an example 

 

A more general take-away:  
How to learn the dictionaries 
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The Image Denoising Problem 

• Given an image  

• Remove Gaussian additive noise from it 
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Image Denoising 

Y = X + ε 

Noisy Input 
Orig. Image 

Gaussian Noise ε = Ν(0, σ) 
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Image Denoising 

• Remove the noise from Y, to obtain X as best 
as possible. 
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Image Denoising 

• Remove the noise from Y, to obtain X as best 
as possible 

• Using sparse representations over learned 
dictionaries 
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Image Denoising 

• Remove the noise from Y, to obtain X as best 
as possible 

• Using sparse representations over learned 
dictionaries 

• Yes, we will learn the dictionaries 
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Image Denoising 

• Remove the noise from Y, to obtain X as best 
as possible 

• Using sparse representations over learned 
dictionaries 

• Yes, we will learn the dictionaries 

• What data will we use? The corrupted image 
itself! 
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Image Denoising 

• We use the data to be denoised to learn the 
dictionary. 

• Training and denoising become an iterated 
process. 

• We use image patches of size √n x √n pixels 
(i.e. if the image is 64x64, patches are 8x8) 
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Image Denoising 

• The data dictionary D 

– Size = n x k (k > n) 

– This is known and fixed, to start with 

– Every image patch can be sparsely represented 
using D   
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}

Can Matching Pursuit solve this?      
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}

Can Matching Pursuit solve this?      

91 Sparse and Overcomplete Representations 

Yes  



Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}

Can Matching Pursuit solve this?      
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Yes  

What constraints does it need? 



Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}

Can Basis Pursuit solve this?  
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

0
}

But this is intractable! 
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}

Can Basis Pursuit solve this?  
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Image Denoising 

• Recall our equations from before.  

• We want to find α so as to minimize the value 
of the equation below: 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}

Can Basis Pursuit solve this?  Yes 
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Image Denoising 

 

 

 

• In the above, X is a patch. 

 

 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}
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Image Denoising 

 

 

 

• In the above, X is a patch. 

• If the larger image is fully expressed by the 
every patch in it, how can we go from patches 
to the image? 

 

 

 
 
 
 
 
 
 



Min
a
{ X Da

2
  a

1
}
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

Min
a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 
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

Min
a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 

(X – Y) is the error between the 
input and denoised image. μ is a 
penalty on the error. 
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

Min
a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 

Error bounding in each patch 
-what is Rij? 
-How many terms in the 
summation? 
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

Min
a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 

λ forces sparsity 
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Image Denoising 

• But, we don’t “know” our dictionary D. 

• We want to estimate D as well. 
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Image Denoising 

• But, we don’t “know” our dictionary D. 

• We want to estimate D as well. 



Min
D,a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

We can use the previous equation itself!!! 

104 Sparse and Overcomplete Representations 



Image Denoising 



Min
D,a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

How do we estimate all 3 at once? 
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Image Denoising 



Min
D,a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

How do we estimate all 3 at once? 

We cannot estimate them at the same time! 
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Image Denoising 



Min
D,a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

How do we estimate all 3 at once? 

Fix 2, and find the optimal 3rd. 
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Image Denoising 



Min
D,a ij ,X

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Initialize X = Y 
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Image Denoising 



Min
a ij

{ X Y
2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Initialize X = Y, initialize D 
 

0 

You know how to solve the remaining 
portion for α – MP, BP! 
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Image Denoising 

• Now, update the dictionary D. 

• Update D one column at a time, following the 
K-SVD algorithm 

• K-SVD maintains the sparsity structure 
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Image Denoising 

• Now, update the dictionary D. 

• Update D one column at a time, following the 
K-SVD algorithm 

• K-SVD maintains the sparsity structure 

• Iteratively update α and D 
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http://www.stanford.edu/~slansel/tutorial/Papers/K-SVD/The%20K-SVD%20Algorithm.pdf
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K-SVD vs K-Means 

• Kmeans:  Given data Y 

– Find D and a such that 

– Error = ||Y – Da||2 is minimized, with constraint 

– |ai|0 = 1 

 

• K-SVD 

– Find D and a such that 

– Error = ||Y – Da||2 is minimized, with constraint 

– |ai|0 < T 
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Image Denoising  

• Updating D 
• For each basis vector, compute its contribution to the 

image 
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

Ek Y  D ja j

jk





Image Denoising  

• Updating D 
• For each basis vector, compute its contribution to the 

image 

• Eigen decomposition of Ek 
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

Ek UV
T



K-SVD 

• Updating D 
• For each basis vector, compute its contribution to the 

image 

• Eigen decomposition of Ek 

• Take the principal eigen vector as the updated basis 
vector. 

 

 

• Update every entry in D 
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Dk U1



K-SVD 

• Initialize D 

• Estimate a

• Update every entry in D 

• Iterate 
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Image Denoising 
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Learned Dictionary for Face Image denoising 

From: M. Elad and M. Aharon, Image denoising via learned 
dictionaries and sparse representation, CVPR, 2006. 





Min
X
{ X Y

2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 

We know D and α  
 

Const. wrt X 

The quadratic term above has a closed-
form solution 
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

Min
X
{ X Y

2

2
 RijX Da ij

2

2

ij



 ij a ij
0

ij

 }

Image Denoising 

We know D and α  
 

Const. wrt X 



X  (I  Rij
TR)1(Y 

ij

 Rij
TDa ij )

ij


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Image Denoising 

• Summarizing… We wanted to obtain 3 things 
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Image Denoising 

• Summarizing… We wanted to obtain 3 things 

 

Weights α 

Dictionary D 

Denoised Image X 
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Image Denoising 

• Summarizing… We wanted to obtain 3 things 

 

Weights α – Your favorite pursuit algorithm 

Dictionary D – Using K-SVD 

Denoised Image X 
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Image Denoising 

• Summarizing… We wanted to obtain 3 things 

 

Weights α – Your favorite pursuit algorithm 

Dictionary D – Using K-SVD 

Denoised Image X 
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Iterating 



Image Denoising 

• Summarizing… We wanted to obtain 3 things 

 

Weights α 

Dictionary D 

Denoised Image X- Closed form solution 
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K-SVD algorithm (skip) 
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Comparing to Other Techniques 

Non-Gaussian data 

PCA of ICA 
Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000. 

126 Sparse and Overcomplete Representations 

Which is which? 



Comparing to Other Techniques 

Non-Gaussian data 

PCA ICA 
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Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000. 



Comparing to Other Techniques 

Non-Gaussian data 

PCA ICA 

Predicts 
data here 

Doesn’t predict 
data here 

Does pretty well 
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Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000. 



Comparing to Other Techniques 

Data still in 2-D space 

ICA Overcomplete 

Doesn’t capture the underlying representation, 
which Overcomplete representations can do… 
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Summary 

• Overcomplete representations can be more 
powerful than component analysis 
techniques. 

• Dictionary can be learned from data. 

• Relative advantages and disadvantages of the 
pursuit algorithms. 
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