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Administrivia

e HW3
— Extends HW?2
— EM
— Prediction (actually HW4)
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e Atrend
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Shamshad Begum, Patanga

A Strange Observation

The pitch of female Indian playback singers
IS On an ever-increasing trajectory

Alka Yangnik, Dil Ka Rishta
Peak: 740 Hz

Lata Mangeshkar, A

)

Peak 310 Hz

1949 1966 2003
Year (AD)

= Mean pitch values: 278Hz, 410Hz, 580Hz
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I’m not the only one to find
the high-pitched stuff annoying

e Sarah McDonald (Holy Cow): “.. shrieking...”

 Khazana.com: “.. female Indian movie
playback singers who can produce ultra high
frequncies which only dogs can hear clearly..”

 www.roadjunky.com: “.. High pitched female
singers doing their best to sound like they
were seven years old ..”
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http://www.roadjunky.com/

A Disturbing Observation

The pitch of female Indian playback singers
* Atrend IS On an ever-increasing trajectory

800 [ Glass Shatters

Alka Yangnik, Dil Ka Rishta

Lata Mangeshkar, A Peak: 740 Hz

Peak: 570

Pitch (Hz)
(o)}
)
o

AN
o
o

Shamshad Begum, Patanga
Average Female | b 310,
Talking Pitch

1949 1966 2003
Year (AD)

= Mean pitch values: 278Hz, 410Hz, 580Hz
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Lets Fix the Song

* The pitch is unpleasant
* The melody isn’t bad
* Modify the pitch, but retain melody

* Problem:

— Cannot just shift the pitch: will destroy the music

* The musicis fine, leave it alone

— Modify the singing pitch without affecting the
music
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“Personalizing” the Song

* Separate the vocals from the background music

— Modify the separated vocals, keep music unchanged

e Separation need not be perfect

— Must only be sufficient to enable pitch modification of vocals

— Pitch modification is tolerant of low-level artifacts
* For octave level pitch modification artifacts can be undetectable.
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Separation example

Dayya Dayya orlglnal (only vocalized reglons)

Frequency
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Some examnles

= Example 1: Vocals shifted down by 4 semitones

23 Oct 2014 11755/18797 9



Some examnle

= Example 1: Vocals shifted down by 4 semitones
= Example 2: Gender of singer partially modified
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Techniques Employed

* Signal separation

— Employed a simple latent-variable based
separation method

e Voice modification

— Equally simple techniques

e Separation: Extensive use of Expectation
Maximization
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Learning Distributions for Data

* Problem: Given a collection of examples from some data,
estimate its distribution

e Solution: Assign a model to the distribution

— Learn parameters of model from data

* Models can be arbitrarily complex

— Mixture densities, Hierarchical models.

* Learning must be done using Expectation Maximization

* Following slides: An intuitive explanation using a simple
example of multinomials

23 Oct 2014 11755/18797 12



A Thought Experiment

63154124 ..

A person shoots a loaded dice repeatedly
You observe the series of outcomes
You can form a good idea of how the dice is loaded

— Figure out what the probabilities of the various numbers are for dice
P(number) = count(number)/sum(rolls)
This is a maximum likelihood estimate

— Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

* A probability distribution over a discrete
collection of items is a Multinomial

P(X : X belongs toa discreteset) = P(X)

* E.g. the roll of dice
—X:Xin(1,2,3,4,5,6)

e Or the toss of a coin
— X : Xin (head, tails)
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Maximum Likelihood Estimation

e Basic principle: Assigh a form to the distribution
— E.g. a multinomial
— Or a Gaussian

* Find the distribution that best fits the histogram
of the data
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Defining “Best Fit”

 The data are generated by draws from the distribution
— l.e. the generating process draws from the distribution

 Assumption: The world is a boring place
— The data you have observed are very typical of the process

 Consequent assumption: The distribution has a high probability of
generating the observed data

— Not necessarily true

e Select the distribution that has the highest probability of generating
the data

— Should assign lower probability to less frequent observations and vice
versa
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Maximum Likelihood Estimation:
Multinomial

* Probability of generating (n,, n,, n3, n,, ng, nN¢)
P(nl’ n2’ n31 n4’ n5, n6) — ConStH pin‘

* Find p,,p,,P3,P4,Ps,Pe SO that the above is maximized
* Alternately maximize

log(P(n,,n,,n,,n,,n;,n,))=log(Const) + > n; log(p;)

— Log() is a monotonic function
— argmax, f(x) = argmax, log(f(x))

* Solving for the probabilities gives us

— Requires constrained optimization to __ N EMENIDACEY
ensure probabilities sumto 1 = Z n; E;%dg;;]rgl
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Segue: Gaussians

0.4 . - o

0.3r

0.2

0.1r

P(X)=N(X;1,0) = —~0.5(X —4)" @ (X - 1))

1 exp(
Jern)'|e|

 Parameters of a Gaussian:

— Mean p, Covariance ©
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Maximum Likelihood: Gaussian

= Given a collection of observations (X, X,,...),
estimate mean u and covariance ®

1
P X11X21--- — —-0.5 Xi_ T®_1 Xi_
( =11 TooTe exp (- 0.5(X; — )" @7 (X, - 1))

log(P(X,, X,,...))=C —o.sz(logq O|)+ (X, — )" O (X, — )

* Maximizing w.r.t uand ® gives us

1 1 ITS STILL
-~ 3" X. O=—S"(X. —uXX —y) JUST
“ NZ | NZ( X =) COUNTING!
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Laplacian

p=0b=1 —o
05 } w=0,b=2
n=0b=4 —
n=-5b=4 —
0.4 F
03 }
02}
) %
0 3 L L 1 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

P(x) = L(X; z,b) :2_1bexp(_|x;ﬂ|j

* Parameters: Mean L, scale b (b > 0)
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Maximum Likelihood: Laplacian

= Given a collection of observations (Xy, X,,...), estimate
mean u and scale b

10g(P(%.,X,,...))=C — N log(b) _z“‘_t‘)”'

* Maximizing w.r.t u and b gives us

u= XX b= X%
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Dirichlet .-

(from wikipedia)

log of the density as we change a from
a=(0.3,0.3,0.3) t0 (2.0, 2.0, 2.0),
keeping all the individual ai's equal to
each other.

K=3. Clockwise from top left: r
&(6.2,2),(3,7,5), (6,2, 6), (2, 3,4) [ [T(e)

P(X)=D(X;a) = [
r |
* Parameters are as (Zaj
— Determine mode and curvature
* Defined only of probability vectors
— X=X X, . Xe], Zi X =1, X, >=0forall i
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Maximum Likelihood: Dirichlet

= Given a collection of observations (X, X,,...),
estimate o

log(P(X,, X,,...)) = Zz(a 1)Iog(XJ,)+NZIog( Nlog( (Zain

* No closed form solution for os.

— Needs gradient ascent

e Several distributions have this property: the ML
estimate of their parameters have no closed form
solution
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Continuing the Thought Experiment

63154124 .. 44163212 ..

 Two persons shoot loaded dice repeatedly
— The dice are differently loaded for the two of them

 We observe the series of outcomes for both persons

* How to determine the probability distributions of the two dice?
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Estimating Probabilities

645123452214346216...
 Observation: The sequence of

numbers from the two dice

— As indicated by the colors, we
know who rolled what number
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Estimating Probabilities

645123452214346216...
Observation: The sequence of

numbers from the two dice

— As indicated by the colors, we
know who rolled what number

652421361..||413524426..

Segregation: Separate the blue
observations from the red

]

Collection of “blue” Collection of “red
numbers numbers
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Estimating Probabilities

 Observation: The sequence of
numbers from the two dice

— Asindicated by the colors, we
know who rolled what number

e Segregation: Separate the blue
observations from the red

 From each set compute
probabilities for each of the 6
possible outcomes

no. of times number was r
P(number) =

645123452214346216...

652421361..

413524426..

!

0.3
025
0.2 1
0.15
01
I I d 0.05 1
olie o]

1 2 3 4 5 6

total number of observed

23 Oct 2014

rolls

!

0.3
0.25
0.2 +
0.15
0.1+
0.05 -
0

1 2 3 4 5 6

11755/18797
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A Thought Experiment

63154124 .. 44163212 ..
 Now imagine that you cannot observe the dice yourself

* Instead there is a “caller” who randomly calls out the outcomes

— 40% of the time he calls out the number from the left shooter, and 60% of the
time, the one from the right (and you know this)

* At any time, you do not know which of the two he is calling out

* How do you determine the probability distributions for the two dice?
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A Thought Experiment

63154124 .. 44163212 ..

* How do you now determine the probability distributions
for the two sets of dice ...
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A Mixture Multinomial

* The caller will call out a number X in any given callout IF

— He selects “RED”, and the Red die rolls the number X
— OR

— He selects “BLUE” and the Blue die rolls the number X

e P(X)=P(Red)P(X|Red) + P(Blue)P(X|Blue)
— E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)

e Adistribution that combines (or mixes) multiple multinomials
is @ mixture multinomial

P(X) =§}2)P(x 12)
AN

Mixture weights Component multinomials
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Mixture Distributions

Mixture Gaussian

P(X)=Y P@)P(X|Z) P(X)=2 P(Z)N(X;x,,0,)
2N Z

Mixture weights Component distributions

Mixture of Gaussians and Laplacians

P(X) = Y. P@N(X; 1,,0,)+ Y. P ] L(X;: ,,b,.)

* Mixture distributions mix several component distributions

— Component distributions may be of varied type
* Mixing weights must sum to 1.0
e Component distributions integrate to 1.0
* Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation
* For our problem: P(X):ZP(Z)P(X|Z)

— Z = color of dice

P(n,n,,n;,n,, N5, Nng) =Const] [ P(X)™ :ConstH(Z P(Z)P(X |Z)) x

 Maximum likelihood solution: Maximize
log(P(n,,n,,n;,n,,ng,ng)) = log(Const) + > " ny Iog(z P(Z)P(X | Z)]

* No closed form solution (summation inside log)!

— In general ML estimates for mixtures do not have a
closed form

— USE EM!

23 Oct 2014 11755/18797
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Expectation Maximization

It is possible to estimate all parameters in this setup using the
Expectation Maximization (or EM) algorithm

First described in a landmark paper by Dempster, Laird and
Rubin

— Maximum Likelihood Estimation from incomplete data, via
the EM Algorithm, Journal of the Royal Statistical Society,
Series B, 1977

Much work on the algorithm since then

The principles behind the algorithm existed for several years
prior to the landmark paper, however.
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Expectation Maximization

e |terative solution

* Get some initial estimates for all parameters

— Dice shooter example: This includes probability
distributions for dice AND the probability with which the
caller selects the dice

 Two steps that are iterated:

— Expectation Step: Estimate statistically, the values of
unseen variables

— Maximization Step: Using the estimated values of the
unseen variables as truth, estimates of the model
parameters
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EM: The auxiliary function

 EM iteratively optimizes the following auxiliary
function

* Q(6, 0’) =2, P(Z|X,0”) log(P(Z,X | 0))

— / are the unseen variables
— Assuming Z is discrete (may not be)

e O’ are the parameter estimates from the
previous iteration

e O are the estimates to be obtained in the
current iteration
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Expectation Maximization as counting

Instance from blue dice Instance from red dice Dice unknown

©® ® ©
/\

6
® . | . N . ® 6 .. e . |
Collection of “blue” Collection of “red” Collection of “blue” Collection of “red” Collection of “blue” Collection of “red”
numbers numbers numbers numbers numbers numbers

e Hidden variable: Z

— Dice: The identity of the dice whose number has been called out

* If we knew Z for every observation, we could estimate all terms
— By adding the observation to the right bin

e Unfortunately, we do not know Z—it is hidden from us!

* Solution: FRAGMENT THE OBSERVATION
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Fragmenting the Observation

e EM is an iterative algorithm
— At each time there is a current estimate of parameters
 The “size” of the fragments is proportional to the a
posteriori probability of the component distributions

— The a posteriori probabilities of the various values of Z are
computed using Bayes’ rule:

P(X1Z2)P(Z)
P(X)

P(Z|X)= =CP(X |Z2)P(2)

* Every dice gets a fragment of size P(dice | number)

23 Oct 2014 11755/18797
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Expectation Maximization

Hypothetical Dice Shooter Example:

We obtain an initial estimate for the probability distribution of the two
sets of dice (somehow):

0.45

P(X | red)

1 2 3 401 5 6 1 2

0.05
We obtain an initial estimate for the probability with which the caller
calls out the two shooters (somehow)
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Expectation Maximization

* Hypothetical Dice Shooter Example:

* Initial estimate:
— P(blue) = P(red) = 0.5
— P(4 | blue)=0.1, for P(4 | red) = 0.05

e Caller has just called out 4
e Posterior probability of colors:

P(red | X =4)=CP(X =4|Z =red)P(Z =red) =C x0.05x0.5=C0.025
P(blue | X =4)=CP(X =4|Z =blue)P(Z =blue) =C x0.1x0.5=C0.05

Normalizin g: P(red| X =4)=0.33; P(blue | X =4)=0.67
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23 Oct 2014

Expectation Maximization

/7~ \
§45123452214346216
NoL

/

4 (0.33) 4 (0.67)
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Expectation Maximization

645123452214346216

* Every observed roll of the dice
contributes to both “Red” and

“Blue”

23 Oct 2014
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Expectation Maximization

@45123452214346216

* Every observed roll of the dice S
contributes to both “Red” and /
“Blue”

23 Oct 2014

6 (0.8) 6(0.2)
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Expectation Maximization

6/45123452214346216

* Every observed roll of the dice —
contributes to both “Red” and /
“Blue”

6(0.8), 4 (0.33) |[6(0.2), 4 (0.67)
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Expectation Maximization

64123452214346216

* Every observed roll of the dice
contributes to both “Red” and /
“Blue”

6 (0.8),4 (0.33), |/6(0.2),4 (0.67),
5 (0.33), 5 (0.67),
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Expectation Maximization

645123452214346216

* Every observed roll of the dice
contributes to both “Red” and

“Blue”

23 Oct 2014

6 (0.8), 4 (0.33),

6 (0.8), 2 (0.14),
1 (0.57), 6 (0.8)

5 (0.33), 1 (0.57),
2 (0.14), 3 (0.33),
4 (0.33), 5 (0.33),
2 (0.14), 2 (0.14),
1(0.57), 4 (0.33),
3(0.33), 4 (0.33),

6 (0.2), 4 (0.67),
5 (0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4 (0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1(0.43), 4 (0.67),
3 (0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1(0.43), 6 (0.2)
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Expectation Maximization

Every observed roll of the dice
contributes to both “Red” and
“Blue”

Total count for “Red” is the sum
of all the posterior probabilities
in the red column

— 7.31

Total count for “Blue” is the sum
of all the posterior probabilities
in the blue column

— 10.69

— Note: 10.69 + 7.31 = 18 = the total
number of instances

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:
— Total countfor1: 1.71

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:
— Total countfor1: 1.71
— Total count for 2: 0.56

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:

— Total count for 1: 1.71
— Total count for 2: 0.56
— Total count for 3: 0.66

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:

— Total count for 1:
— Total count for 2:
— Total count for 3:
— Total count for 4:

1.71
0.56
0.66
1.32

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Total count for “Red” : 7.31

Expectation Maximization

Red:

Total count for 1
Total count for 2
Total count for 3

:1.71
: 0.56
: 0.66

Total count for 4: 1.32

Total count for 5

: 0.66

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Total count for “Red” : 7.31

Expectation Maximization

Red:

Total count for 1: 1.71
Total count for 2: 0.56
Total count for 3: 0.66
Total count for 4: 1.32
Total count for 5: 0.66
Total count for 6: 2.4

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Total count for “Red” : 7.31

Expectation Maximization

Red:

Updated probability of Red dice:

Total count for 1: 1.71
Total count for 2: 0.56
Total count for 3: 0.66
Total count for 4: 1.32
Total count for 5: 0.66
Total count for 6: 2.4

P(1 | Red) = 1.71/7.31 = 0.234
P(2 | Red) = 0.56/7.31 = 0.077
P(3 | Red) = 0.66/7.31 = 0.090
P(4 | Red) = 1.32/7.31 = 0.181
P(5 | Red) = 0.66/7.31 = 0.090
P(6 | Red) = 2.40/7.31 = 0.328

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:
— Total count for 1: 1.29

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:
— Total count for 1: 1.29
— Total count for 2: 3.44

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:

— Total count for 1: 1.29
— Total count for 2: 3.44
— Total count for 3: 1.34

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:
— Total count for 1
— Total count for 2
— Total count for 3
— Total count for 4

: 1.29
: 3.44
: 1.34
: 2.68

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Total count for “Blue” : 10.69

Expectation Maximization

Blue:

Total count for 1
Total count for 2
Total count for 3

: 1.29
: 3.44
: 1.34

Total count for 4: 2.68

Total count for 5

: 1.34

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Total count for “Blue” : 10.69

Expectation Maximization

Blue:

Total count for 1: 1.29
Total count for 2: 3.44
Total count for 3: 1.34
Total count for 4: 2.68
Total count for 5: 1.34
Total count for 6: 0.6

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




e Total count for “Blue” : 10.69

Expectation Maximization

e Blue:

* Updated probability of Blue dice:

Total count for 1: 1.29
Total count for 2: 3.44
Total count for 3: 1.34
Total count for 4: 2.68
Total count for 5: 1.34
Total count for 6: 0.6

P(1 | Blue) = 1.29/11.69 = 0.122
P(2 | Blue) = 0.56/11.69 = 0.322
P(3 | Blue) = 0.66/11.69 = 0.125
P(4 | Blue) = 1.32/11.69 = 0.250
P(5 | Blue) = 0.66/11.69 = 0.125
P(6 | Blue) = 2.40/11.69 = 0.056

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31
Total count for “Blue” : 10.69

Total instances = 18
— Note 7.31+10.69=18
We also revise our estimate for the

probability that the caller calls out
Red or Blue

— i.e the fraction of times that he calls Red
and the fraction of times he calls Blue

P(Z=Red) = 7.31/18 = 0.41
P(Z=Blue) = 10.69/18 = 0.59

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69




The updated values

= Probability of Red dice:

P(1|Red) = 1.71/7.31 = 0.234
P(2 | Red) = 0.56/7.31 = 0.077
P(3 | Red) = 0.66/7.31 = 0.090
P(4 | Red) = 1.32/7.31 = 0.181
P(5 | Red) = 0.66/7.31 = 0.090
P(6 | Red) = 2.40/7.31 = 0.328

= Probability of Blue dice:

P(1 | Blue) = 1.29/11.69 = 0.122
P(2 | Blue) = 0.56/11.69 = 0.322
P(3 | Blue) = 0.66/11.69 = 0.125
P(4 | Blue) = 1.32/11.69 = 0.250
P(5 | Blue) = 0.66/11.69 = 0.125
P(6 | Blue) = 2.40/11.69 = 0.056

0O 0O 0 0O O O

O 0O 0 0O O O

P(Z=Red) = 7.31/18 = 0.41
P(Z=Blue) = 10.69/18 = 0.59

Called | P(red|X) | P(blue|X)
6 .8 2
4 .33 .67
5 .33 .67
1 57 43
2 14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2

THE UPDATED VALUES CAN BE USED TO REPEAT THE
PROCESS. ESTIMATION IS AN ITERATIVE PROCESS




The Dice Shooter Example

63154124 .. 44163212 ..

Initialize P(Z2), P(X | 2)

Estimate P(Z | X) for each Z, for each called out number
Associate X with each value of Z, with weight P(Z | X)

Re-estimate P(X | Z) for every value of Xand Z

Re-estimate P(2)

If not converged, return.to:2




In Squiggles

* Given a sequence of observations O,, O,, ..

— N, is the number of observations of number X
* |nitialize P(Z), P(X|Z) for dice Z and numbers X
* |terate:

— For each number X:

— Update:

P(X|Z2)P(Z)

P(Z | X) =

> P(Z)P(X|Z')
=

P(X[Z2)=

P(Z]X)
Osuchéo——x _ NX P(Z | X)

SP(Z|0) D N,P(Z|X)

P(Z) =

> N,P(Z|X)

X

2. 2. NP1 X)




Solutions may not be unique

 The EM algorithm will give us one of many solutions, all
equally valid!
— The probability of 6 being called out:

P(6) = P (6| red) + AP(6|blue) = oP. + /R,

* Assigns P, as the probability of 6 for the red die
* Assigns P, as the probability of 6 for the blue die

— The following too is a valid solution [FIX]
P(6) =1.0(aP. + AR, )+ 0.0anything

* Assigns 1.0 as the a priori probability of the red die
* Assigns 0.0 as the probability of the blue die

* The solution is NOT unique
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A more complex model: Gaussian
mixtures

* A Gaussian mixture can represent data
distributions far better than a simple
Gaussian

 The two panels show the histogram of an
unknown random variable

* The first panel shows how it is modeled by
a simple Gaussian

 The second panel models the histogram
by a mixture of two Gaussians

e (Caveat: Itis hard to know the optimal
number of Gaussians in a mixture
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A More Complex Model

P(k)

exp (- 0.5(X — 1) O (X - 4,))

F><X>=ZF>(k)N<x;yk,@k)=ZJ(2 o
k k T .

e Gaussian mixtures are often good models for the
distribution of multivariate data

* Problem: Estimating the parameters, given a
collection of data
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Gaussian Mixtures: Generating model

6.11.4531.94222490.5

P(X) =2 PKIN(X; ,0,)

N\

e The caller now has two Gaussians

— At each draw he randomly selects a Gaussian, by
the mixture weight distribution

— He then draws an observation from that Gaussian

— Much like the dice problem (only the outcomes are
now real numbers and can be anything)

23 Oct 2014 11755/18797 68



Estimating GMM with complete information

* Observation: A collection of 6.11.453194.2224905 ...
numbers drawn from a mixture
of 2 Gaussians
— Asindicated by the colors, we
know which Gaussian generated
what number 615342 49 ..1|14 19 22 05..

* Segregation: Separate the blue
observations from the red

* From each set compute : If
parameters for that Gaussian : /\ A

Hreg :N— ZX| ®red = N Z(Xi_:ured)(xi_:ured)T

red iered red iered

P(red) = NI\T"'
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Gaussian Mixtures: Generating model

29 6114531.94222490.5

P(X) =2 PKIN(X; ,0,)

N\

* Problem: In reality we will not know which

Gaussian any observation was drawn from..

— The color information is missing
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Fragmenting the observation

Gaussian unknown

ez
N\

2 4.2

(@2 . o) |

Collection of “blue” Collection of “red”
numbers numbers

* The identity of the Gaussian is not known!
* Solution: Fragment the observation
* Fragment size proportional to a posteriori probability

Pk | X) =P XTKP(K) _  PIINOG 1, )
ZP(k')P(X |K") ZP(k')N(X;yk,,@k,)

23 Oct 2014 11755/18797

71



Expectation Maximization

. SRUNT Number | P(red|X) | P(blue|X)
In|t|al|.ze P(k), n, and ®, for both 51 e i
Gaussians 1.4 .33 .67

— Important how we do this 2.3 i 23
_ _ o 1.9 41 59

— Typical solution: Initialize means 42 64 36
randomly, ®, as the global covariance of | 2.2 43 57
the data and P(k) uniformly 4.9 .66 .34
0.5 .05 .95

 Compute fragment sizes for each
Gaussian, for each observation

~ P(K)N(X; 14,0,)
P(k|X) = > PUON(X; 44,0,




Expectation Maximization

* Each observation contributes only as
much as its fragment size to each
statistic

* Mean(red) =
(6.1*0.81 + 1.4*0.33 +5.3*0.75 +
1.9*%0.41 + 4.2*%0.64 + 2.2*0.43 + 4.9*0.66
+0.5*0.05) /
(0.81+0.33+0.75+0.41+0.64+0.43 +
0.66 + 0.05)
=17.05/4.08=4.18

m Var(red) =

e e N

Number | P(red|X) | P(blue|X)
6.1 .81 19
1.4 .33 .67
5.3 75 .25
1.9 41 .59
4.2 .64 .36
2.2 43 57
4.9 .66 .34
0.5 .05 .95
408 3.92

(6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 +
5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 +
4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 +
4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81+0.33+0.75+0.41+0.64 +0.43 + 0.66 + 0.05)

P(red) _ 408
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EM for Gaussian Mixtures

1. Initialize P(k), p, and ®, for all Gaussians

2. For each observation X compute a posteriori
probabilities for all Gaussian

P(K)N(X; 14,0,)
ZP(kI)N(X;/’lk"@k')

3. Update mixture weights, means and variances for all

P(k|X) =

Gaussians
Zp(kp() Z P(kiX) X ZP(k X) (X = 24)°
Pl)="—— TSR T SRR

4. If not converged, return to 2
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EM estimation of Gaussian Mixtures

e An Example

120 : -

100

80 ]

60| 1 i
o M
20
ol
-4 3 2 E] 0 1 2 3 4 ‘

Histogram of 4000 Individual parameters Two-Gaussian mixture
instances of a randomly of a two-Gaussian estimated by EM
generated data mixture estimated by EM
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Expectation Maximization

 The same principle can be extended to mixtures of other
distributions.

e E.g. Mixture of Laplacians: Laplacian parameters become

ﬂk:zpikm?(k'”x ZP(kl eICRIEE

* In a mixture of Gaussians and Laplacians, Gaussians use the
Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization

* The EM algorithm is used whenever proper statistical analysis of
a phenomenon requires the knowledge of a hidden or missing
variable (or a set of hidden/missing variables)

— The hidden variable is often called a “latent” variable

Some examples:

— Estimating mixtures of distributions

* Only data are observed. The individual distributions and mixing proportions
must both be learnt.

— Estimating the distribution of data, when some attributes are missing

— Estimating the dynamics of a system, based only on observations that
may be a complex function of system state
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Solve this problem:

* Problem 1:

— Caller rolls a dice and flips a coin
— He calls out the number rolled if the coin shows head
— Otherwise he calls the number+1

— Determine p(heads) and p(number) for the dice from
a collection of outputs

* Problem 2:

— Caller rolls two dice

— He calls out the sum
— Determine P(dice) from a collection of ouputs
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The dice and the coin

Heads or tail?

“Heads” count BELSREL

f X

e Unknown: Whether it was head or tails
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The dice and the coin

Heads or tail?

@

< count /\ “Tails” coun
J X
L@ . 3 |

“Head t

e Unknown: Whether it was head or tails

P(N)P(heads)

P(heads | N) = P(N)P(heads) + P(N —1)P(tails)

count(N) =#N.P(heads | N)+#(N —1).P(tails | N —1)
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The two dice
@

31 1,3

2,2

 Unknown: How to partition the number
* Count,.(3)+=P(3,1] 4)
* Count,,,.(2) +=P(2,2 | 4)
* Count,,,.(1) +=P(1,3 | 4)
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The two dice
@

31 1,3

2,2

* Update rules
R(N)R,(K-N)

P(N,K —N|K) =

6

> PR, (K-1J)

12
count,(N) = > #K.P(N,K—-N|K)
K=2
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Fragmentation can be hierarchical
P(X)=) PKk)Y P(Z|k)P(X|Zk) D

* E.g. mixture of mixtures

* Fragments are further fragmented..
— Work this out
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More later

Will see a couple of other instances of the use
of EM

EM for signal representation: PCA and factor
analysis

EM for signal separation
EM for parameter estimation

EM for homework..



