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Administrivia 

• HW3  

– Extends HW2 

– EM 

– Prediction (actually HW4) 
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A Strange Observation 

• A trend 
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I’m not the only one to find  
the high-pitched stuff annoying 

• Sarah McDonald (Holy Cow): “.. shrieking…” 
 

• Khazana.com: “.. female Indian movie 
playback singers who can produce ultra high 
frequncies which only dogs can hear clearly..”  

 

• www.roadjunky.com: “.. High pitched female 
singers doing their best to sound like they 
were seven years old ..” 
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A Disturbing Observation 

• A trend 
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Lets Fix the Song 

• The pitch is unpleasant 

• The melody isn’t bad 

• Modify the pitch, but retain melody 
 

• Problem: 

– Cannot just shift the pitch: will destroy the music 

• The music is fine, leave it alone 

– Modify the singing pitch without affecting the 
music 
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“Personalizing” the Song 

• Separate the vocals from the background music 

– Modify the separated vocals, keep music unchanged 
 

• Separation need not be perfect 

– Must only be sufficient to enable pitch modification of vocals 

– Pitch modification is tolerant of low-level artifacts 
• For octave level pitch modification artifacts can be undetectable. 
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Separation example 
Dayya Dayya original (only vocalized regions) 
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Some examples 
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 Example 1: Vocals shifted down by 4 semitonesExample 2: 

Gender of singer partially modified 



Some examples 
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 Example 1: Vocals shifted down by 4 semitones 

 Example 2: Gender of singer partially modified 



Techniques Employed 

• Signal separation 

– Employed a simple latent-variable based 
separation method 

• Voice modification 

– Equally simple techniques 

 

• Separation: Extensive use of Expectation 
Maximization 
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Learning Distributions for Data 

• Problem: Given a collection of examples from some data, 
estimate its distribution 

 

• Solution: Assign a model to the distribution 

– Learn parameters of model from data 
 

• Models can be arbitrarily complex 

– Mixture densities, Hierarchical models. 
 

• Learning must be done using Expectation Maximization 

• Following slides: An intuitive explanation using a simple 
example of multinomials 
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A Thought Experiment 

• A person shoots a loaded dice repeatedly 

• You observe the series of outcomes 

• You can form a good idea of how the dice is loaded 
– Figure out what the probabilities of the various numbers are for dice 

• P(number) = count(number)/sum(rolls) 

• This is a maximum likelihood estimate 
– Estimate that makes the observed sequence of numbers most probable 
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The Multinomial Distribution 

• A probability distribution over a discrete 
collection of items is a Multinomial 

 

 

 

• E.g. the roll of dice 
– X : X in (1,2,3,4,5,6) 

 

• Or the toss of a coin 
– X : X in (head, tails) 
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Maximum Likelihood Estimation 

• Basic principle: Assign a form to the distribution 
– E.g. a multinomial 

– Or a Gaussian 

• Find the distribution that best fits the histogram 
of the data 
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Defining “Best Fit” 
• The data are generated by draws from the distribution 

– I.e. the generating process draws from the distribution 
 

• Assumption: The world is a boring place 

– The data you have observed are very typical of the process 
 

• Consequent assumption: The distribution has a high probability of 
generating the observed data 

– Not necessarily true 
 

• Select the distribution that has the highest probability of generating 
the data 

– Should assign lower probability to less frequent observations and vice 
versa 
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Maximum Likelihood Estimation: 
Multinomial 

• Probability of generating (n1, n2, n3, n4, n5, n6) 
 
 

• Find p1,p2,p3,p4,p5,p6 so that the above is maximized 

• Alternately maximize 

 
 

– Log() is a monotonic function 

– argmaxx f(x) =  argmaxx log(f(x)) 

• Solving for the probabilities gives us 

– Requires constrained optimization to  
ensure probabilities sum to 1 
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Segue:  Gaussians 

• Parameters of a Gaussian:  

– Mean m, Covariance Q 
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Maximum Likelihood: Gaussian 

 Given a collection of observations (X1, X2,…), 
estimate mean m and covariance Q 

 
 

 

 

 

• Maximizing w.r.t m and Q gives us 
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Laplacian 

• Parameters: Mean m, scale b (b > 0) 
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Maximum Likelihood: Laplacian 

 Given a collection of observations (x1, x2,…), estimate 
mean m and scale b 

 

 

 

 

• Maximizing w.r.t m and b gives us 
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• Parameters are as 
– Determine mode and curvature 

• Defined only of probability vectors 
– X = [x1 x2 .. xK], Si xi = 1,  xi >= 0 for all i 
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Maximum Likelihood: Dirichlet 

 Given a collection of observations (X1, X2,…), 
estimate a 

 

 

 

• No closed form solution for as. 

– Needs gradient ascent 
 

• Several distributions have this property: the ML 
estimate of their parameters have no closed form 
solution 
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Continuing the Thought Experiment 

• Two persons shoot loaded dice repeatedly 
– The dice are differently loaded for the two of them 

• We observe the series of outcomes for both persons 
 

• How to determine the probability distributions of the two dice? 
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Estimating Probabilities 

• Observation: The sequence of 
numbers from the two dice 

–  As indicated by the colors, we 
know who rolled what number 
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Estimating Probabilities 

• Observation: The sequence of 
numbers from the two dice 

–  As indicated by the colors, we 
know who rolled what number 

 

• Segregation: Separate the blue 
observations from the red 
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Estimating Probabilities 
• Observation: The sequence of 

numbers from the two dice 

–  As indicated by the colors, we 
know who rolled what number 

 

• Segregation: Separate the blue 
observations from the red 

 

•  From each set compute 
probabilities for each of the 6 
possible outcomes 

 

rolls observed ofnumber  total

rolled number was  timesof no.
)( numberP
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A Thought Experiment 

• Now imagine that you cannot observe the dice yourself 

• Instead there is a “caller” who randomly calls out the outcomes 

– 40% of the time he calls out the number from the left shooter, and 60% of the 
time, the one from the right (and you know this) 

 

• At any time, you do not know which of the two he is calling out 

• How do you determine the probability distributions for the two dice? 
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A Thought Experiment 

• How do you now determine the probability distributions 
for the two sets of dice … 

 

• .. If you do not even know what fraction of time the blue 
numbers are called, and what fraction are red?  
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A Mixture Multinomial 
• The caller will call out a number X in any given callout IF 

– He selects “RED”, and the Red die rolls the number X 

– OR 

– He selects “BLUE” and the Blue die rolls the number X 
 

• P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue) 
– E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue) 

 

• A distribution that combines (or mixes) multiple multinomials 
is a mixture multinomial 
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Mixture Distributions 

• Mixture distributions mix several component distributions 

– Component distributions may be of varied type 

• Mixing weights must sum to 1.0 

• Component distributions integrate to 1.0 

• Mixture distribution integrates to 1.0 
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Maximum Likelihood Estimation 

• For our problem: 

– Z = color of dice 
 

 

• Maximum likelihood solution: Maximize 

 
 

• No closed form solution (summation inside log)!  

– In general ML estimates for mixtures do not have a 
closed form 

– USE EM! 
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Expectation Maximization 

• It is possible to estimate all parameters in this setup using the 
Expectation Maximization (or EM) algorithm 

 

• First described in a landmark paper by Dempster, Laird and 
Rubin 

– Maximum Likelihood Estimation from incomplete data, via 
the EM Algorithm, Journal of the Royal Statistical Society, 
Series B, 1977 

 

• Much work on the algorithm since then 
 

• The principles behind the algorithm existed for several years 
prior to the landmark paper, however. 
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Expectation Maximization 

• Iterative solution 
 

• Get some initial estimates for all parameters 

– Dice shooter example: This includes probability 
distributions for dice AND the probability with which the 
caller selects the dice 

 

• Two steps that are iterated: 

– Expectation Step: Estimate statistically, the values of 
unseen variables 

– Maximization Step: Using the estimated values of the 
unseen variables as truth, estimates of the model 
parameters 
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EM: The auxiliary function 

• EM iteratively optimizes the following auxiliary 
function 

• Q(q, q’) = SZ P(Z|X,q’) log(P(Z,X | q)) 
 

– Z are the unseen variables 

– Assuming Z is discrete (may not be) 

• q’ are the parameter estimates from the 
previous iteration 

• q are the estimates to be obtained in the 
current iteration 
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Expectation Maximization as counting 

• Hidden variable: Z 
– Dice: The identity of the dice whose number has been called out 

 

• If we knew Z for every observation, we could estimate all terms 
– By adding the observation to the right bin 

 

• Unfortunately, we do not know Z – it is hidden from us! 
 

• Solution:  FRAGMENT THE OBSERVATION 
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Fragmenting the Observation 

• EM is an iterative algorithm 

– At each time there is a current estimate of parameters 

• The “size” of the fragments is proportional to the a 

posteriori probability of the component distributions 

– The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule: 

 

 

 

• Every dice gets a fragment of size P(dice | number) 
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Expectation Maximization 

• Hypothetical Dice Shooter Example: 

• We obtain an initial estimate for the probability distribution of the two 
sets of dice (somehow):   

 

 

 

 

 

• We obtain an initial estimate for the probability with which the caller 
calls out the two shooters (somehow) 
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Expectation Maximization 

• Hypothetical Dice Shooter Example: 

• Initial estimate:   

– P(blue) = P(red) = 0.5 

– P(4 | blue) = 0.1, for P(4 | red) =  0.05 

 

• Caller has just called out 4 

• Posterior probability of colors:  

025.05.005.0)()|4()4|( CCredZPredZXCPXredP 
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Expectation Maximization 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 
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Expectation Maximization 

• Every observed roll of the dice 
contributes to both “Red” and 
“Blue” 

• Total count for “Red” is the sum 
of all the posterior probabilities 
in the red column 
– 7.31 

 

• Total count for “Blue” is the sum 
of all the posterior probabilities 
in the blue column 
– 10.69 

– Note: 10.69 + 7.31 = 18 = the total 
number of instances 
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Expectation Maximization 

• Total count for “Red” : 7.31 
• Red: 

– Total count for 1:  1.71 

Called P(red|X) P(blue|X) 
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Expectation Maximization 

• Total count for “Red” : 7.31 
• Red: 

– Total count for 1:  1.71 
– Total count for 2:  0.56 

Called P(red|X) P(blue|X) 
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Expectation Maximization 

• Total count for “Red” : 7.31 
• Red: 

– Total count for 1:  1.71 
– Total count for 2:  0.56 
– Total count for 3:  0.66 

Called P(red|X) P(blue|X) 
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Expectation Maximization 

• Total count for “Red” : 7.31 

• Red: 
– Total count for 1:  1.71 

– Total count for 2:  0.56 

– Total count for 3:  0.66 

– Total count for 4:  1.32 

Called P(red|X) P(blue|X) 
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Expectation Maximization 

• Total count for “Red” : 7.31 

• Red: 
– Total count for 1:  1.71 

– Total count for 2:  0.56 

– Total count for 3:  0.66 

– Total count for 4:  1.32 

– Total count for 5:  0.66 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 
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Expectation Maximization 

• Total count for “Red” : 7.31 

• Red: 
– Total count for 1:  1.71 

– Total count for 2:  0.56 

– Total count for 3:  0.66 

– Total count for 4:  1.32 

– Total count for 5:  0.66 

– Total count for 6:  2.4 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 
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Expectation Maximization 

• Total count for “Red” : 7.31 

• Red: 
– Total count for 1:  1.71 

– Total count for 2:  0.56 

– Total count for 3:  0.66 

– Total count for 4:  1.32 

– Total count for 5:  0.66 

– Total count for 6:  2.4 
 

• Updated probability of Red dice: 
– P(1 | Red) = 1.71/7.31 = 0.234 

– P(2 | Red) = 0.56/7.31 = 0.077 

– P(3 | Red) = 0.66/7.31 = 0.090 

– P(4 | Red) = 1.32/7.31 = 0.181 

– P(5 | Red) = 0.66/7.31 = 0.090 

– P(6 | Red) = 2.40/7.31 = 0.328 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 
Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 



Expectation Maximization 
Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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7.31 10.69 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 



Expectation Maximization 
Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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7.31 10.69 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 

– Total count for 3:  1.34 



Expectation Maximization 
Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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7.31 10.69 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 

– Total count for 3:  1.34 

– Total count for 4:  2.68 



Expectation Maximization 
Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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7.31 10.69 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 

– Total count for 3:  1.34 

– Total count for 4:  2.68 

– Total count for 5:  1.34 



Expectation Maximization 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 

– Total count for 3:  1.34 

– Total count for 4:  2.68 

– Total count for 5:  1.34 

– Total count for 6:  0.6 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

• Total count for “Blue” : 10.69 

• Blue: 
– Total count for 1:  1.29 

– Total count for 2:  3.44 

– Total count for 3:  1.34 

– Total count for 4:  2.68 

– Total count for 5:  1.34 

– Total count for 6:  0.6 
 

• Updated probability of Blue dice: 
– P(1 | Blue) = 1.29/11.69 = 0.122 

– P(2 | Blue) = 0.56/11.69 = 0.322 

– P(3 | Blue) = 0.66/11.69 = 0.125 

– P(4 | Blue) = 1.32/11.69 = 0.250 

– P(5 | Blue) = 0.66/11.69 = 0.125 

– P(6 | Blue) = 2.40/11.69 = 0.056 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

• Total count for “Red” : 7.31 

• Total count for “Blue” : 10.69 

• Total instances = 18  
– Note 7.31+10.69 = 18 

• We also revise our estimate for the 
probability that the caller calls out 
Red or Blue 
– i.e the fraction of times that he calls Red 

and the fraction of times he calls Blue 
 

• P(Z=Red) = 7.31/18 = 0.41 

• P(Z=Blue) = 10.69/18 = 0.59 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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The updated values 

• P(Z=Red) = 7.31/18 = 0.41 

• P(Z=Blue) = 10.69/18 = 0.59 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 

62 

 Probability of Blue dice: 

 P(1 | Blue) = 1.29/11.69 = 0.122 

 P(2 | Blue) = 0.56/11.69 = 0.322 

 P(3 | Blue) = 0.66/11.69 = 0.125 

 P(4 | Blue) = 1.32/11.69 = 0.250 

 P(5 | Blue) = 0.66/11.69 = 0.125 

 P(6 | Blue) = 2.40/11.69 = 0.056 

 Probability of Red dice: 

 P(1 | Red) = 1.71/7.31 = 0.234 

 P(2 | Red) = 0.56/7.31 = 0.077 

 P(3 | Red) = 0.66/7.31 = 0.090 

 P(4 | Red) = 1.32/7.31 = 0.181 

 P(5 | Red) = 0.66/7.31 = 0.090 

 P(6 | Red) = 2.40/7.31 = 0.328 

THE UPDATED VALUES CAN BE USED TO REPEAT THE 

PROCESS. ESTIMATION IS AN ITERATIVE PROCESS 
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The Dice Shooter Example 

1. Initialize P(Z),  P(X | Z) 

2. Estimate P(Z | X) for each Z, for each called out number 
• Associate X with each value of Z, with weight P(Z | X) 

3. Re-estimate P(X | Z) for every value of X and Z 

4. Re-estimate P(Z) 

5. If not converged, return to 2 
63 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 

6 4 1 5 3 2 2 2 … 
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In Squiggles 

• Given a sequence of observations O1, O2, .. 

– NX is the number of observations of number X 

• Initialize P(Z), P(X|Z) for dice Z and numbers X 

• Iterate: 

– For each number X: 
 

 

– Update: 
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Solutions may not be unique 

• The EM algorithm will give us one of many solutions, all 
equally valid! 
– The probability of 6 being called out: 

 

 

• Assigns Pr as the probability of 6 for the red die 

• Assigns Pb as the probability of 6 for the blue die 
 

– The following too is a valid solution [FIX] 

 

 
• Assigns 1.0 as the a priori probability of the red die 

• Assigns 0.0 as the probability of the blue die 

• The solution is NOT unique 
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A more complex model: Gaussian 

mixtures 

• A Gaussian mixture can represent data 
distributions far better than a simple 
Gaussian 

 

• The two panels show the histogram of an 
unknown random variable 

 

• The first panel shows how it is modeled by 
a simple Gaussian 

 

• The second panel models the histogram 
by a mixture of two Gaussians 
 

• Caveat: It is hard to know the optimal 
number of Gaussians in a mixture 
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A More Complex Model 

• Gaussian mixtures are often good models for the 
distribution of multivariate data 

• Problem: Estimating the parameters, given a 
collection of data 
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Gaussian Mixtures: Generating model 

• The caller now has two Gaussians 

– At each draw he randomly selects a Gaussian, by 

the mixture weight distribution 

– He then draws an observation from that Gaussian 

– Much like the dice problem (only the outcomes are 

now real numbers and can be anything) 
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Estimating GMM with complete information 

• Observation: A collection of 
numbers drawn from a mixture 
of 2 Gaussians 

–  As indicated by the colors, we 
know which Gaussian generated 
what number 

 

• Segregation: Separate the blue 
observations from the red 

 

• From each set compute 
parameters for that Gaussian 

 

N

N
redP red)(
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Gaussian Mixtures: Generating model 

• Problem:  In reality we will not know which 

Gaussian any observation was drawn from.. 

– The color information is missing 
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Fragmenting the observation 

• The identity of the Gaussian is not known! 

• Solution:  Fragment the observation 

• Fragment size proportional to a posteriori probability 
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Collection of “blue” 

numbers 

Collection of “red” 

numbers 
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Expectation Maximization 

• Initialize P(k), mk and Qk for both 
Gaussians 
– Important how we do this 

– Typical solution: Initialize means 
randomly, Qk as the global covariance of 
the data and P(k) uniformly 

• Compute fragment sizes for each 
Gaussian, for each observation 

Number P(red|X) P(blue|X) 

6.1 .81 .19 

1.4 .33 .67 

5.3 .75 .25 

1.9 .41 .59 

4.2 .64 .36 

2.2 .43 .57 

4.9 .66 .34 

0.5 .05 .95 
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Expectation Maximization 
• Each observation contributes only as 

much as its fragment size to each 
statistic 

• Mean(red) =   
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 4.9*0.66 
+ 0.5*0.05 )  / 
(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 
0.66 + 0.05) 
= 17.05 / 4.08 = 4.18 

Number P(red|X) P(blue|X) 

6.1 .81 .19 

1.4 .33 .67 

5.3 .75 .25 

1.9 .41 .59 

4.2 .64 .36 

2.2 .43 .57 

4.9 .66 .34 

0.5 .05 .95 
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4.08 3.92 

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 +  
                   (5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 +  
                   (4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 +  
                   (4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) / 
               (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05) 

8

08.4
)( redP



EM for Gaussian Mixtures 

1. Initialize P(k), mk and Qk for all Gaussians 

2. For each observation X compute a posteriori 
probabilities for all Gaussian 

 
 

 
3. Update mixture weights, means and variances for all 

Gaussians 

 

 

 

4. If not converged, return to 2 
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EM estimation of Gaussian Mixtures 

• An Example 
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Histogram of 4000 

instances of a randomly 

generated data 

Individual parameters 

of a two-Gaussian 

mixture estimated by EM 

Two-Gaussian mixture 

estimated by EM 



Expectation Maximization 

• The same principle can be extended to mixtures of other 
distributions. 

 

• E.g. Mixture of Laplacians:  Laplacian parameters become 

 

 

 

 

 

• In a mixture of Gaussians and Laplacians, Gaussians  use the 
Gaussian update rules, Laplacians use the Laplacian rule 
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Expectation Maximization 
• The EM algorithm is used whenever proper statistical analysis of 

a phenomenon requires the knowledge of a hidden or missing 
variable (or a set of hidden/missing variables) 
– The hidden variable is often called a “latent” variable 

 

• Some examples: 
– Estimating mixtures of distributions 

• Only data are observed. The individual distributions and mixing proportions 
must both be learnt. 

– Estimating the distribution of data, when some attributes are missing 

– Estimating the dynamics of a system, based only on observations that 
may be a complex function of system state 
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Solve this problem: 

• Problem 1: 

– Caller rolls a dice and flips a coin 

– He calls out the number rolled if the coin shows head 

– Otherwise he calls the number+1 

– Determine p(heads) and p(number) for the dice from 
a collection of outputs 

 

• Problem 2: 

– Caller rolls two dice 

– He calls out the sum 

– Determine P(dice) from a collection of ouputs 
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The dice and the coin 

• Unknown: Whether it was head or tails 
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The dice and the coin 

• Unknown: Whether it was head or tails 
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The two dice 

• Unknown: How to partition the number 

• Countblue(3) += P(3,1 | 4) 

• Countblue(2) += P(2,2 | 4) 

• Countblue(1) += P(1,3 | 4) 
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The two dice 

• Update rules 
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Fragmentation can be hierarchical 

• E.g. mixture of mixtures 
• Fragments are further fragmented.. 

– Work this out 
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More later 

• Will see a couple of other instances of the use 
of EM 

• EM for signal representation: PCA and factor 
analysis 

• EM for signal separation 

• EM for parameter estimation 

 

• EM for homework.. 
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