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Prediction :  a holy grail 

• Physical trajectories 
– Automobiles, rockets, heavenly bodies 

• Natural phenomena 
– Weather 

• Financial data 
– Stock market 

• World affairs 
– Who is going to have the next XXXX spring? 

• Signals 
– Audio, video.. 
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A Common Trait 

• Series data with trends 

• Stochastic functions of stochastic functions (of stochastic functions of …) 

• An underlying process that progresses (seemingly) randomly 

– E.g. Current position of a vehicle 

– E.g. current sentiment in stock market 

– Current state of social/economic indicators 
 

• Random expressions of underlying process 

– E.g  what you see from the vehicle 

– E.g. current stock prices of various stock 

– E.g. do populace stay quiet / protest on streets / topple dictator.. 
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What a sensible agent must do 

• Learn about the process 

– From whatever they know 

– Basic requirement for other 

procedures 

 

• Track underlying processes 

 

• Predict future values 
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A Specific Form of Process.. 

• Doubly stochastic processes 
 

 

• One random process generates an X 

– Random  process X   P(X; Q) 
 

• Second-level process generates observations 
as a function of  X 

• Random process  Y  P(Y;  f(X, L)) 
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Doubly Stochastic Processes 

• Doubly stochastic processes 
are models 

– May not be a true representation 
of process underlying actual data 

 

• First level variable may be a quantifiable variable 

– Position/state of vehicle 

– Second level variable is a stochastic function of position 

• First level variable may not have meaning 

– “Sentiment” of a stock market 

– “Configuration” of vocal tract 
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Stochastic Function of a Markov Chain 

• First-level variable is usually abstract 

 

 

• The first level variable assumed to be the output of a 
Markov Chain 

• The second level variable is a function of the output of the 
Markov Chain 

• Also called an HMM 

• Another variant – stochastic function of Markov process 

– Kalman Filtering.. 

11755/18797 7 

X Y 



Markov Chain 

• Process can go through a number of states 

– Random walk, Brownian motion.. 

• From each state, it can go to any other state with a probability 

– Which only depends on the current state 

• Walk goes on forever 

– Or until it hits an “absorbing wall” 

• Output of the process – a sequence of states the process went 
through 
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Stochastic Function of a Markov Chain 

• Output: 

– Y   P(Y ; f([s1, s2, …], L)) 

• Specific to HMM: 

– Y == Y1 Y2 … 

– Yi  P(Yi ; f(si), L) 
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Stochastic function of Markov Chains 
(HMMS) 

• Problems: 
 

• Learn the nature of the process from data 

• Track the underlying state 

– Semantics 

• Predict the future 
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Fun stuff with HMMs.. 
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The little station between the mall and 
the city 

• A little station between the city and a mall 

– Inbound trains bring people back from the mall 

• Mainly shoppers 

• Occasional mall employee 
– Who may have shopped.. 

– Outbound trains bring back people from the city 

• Mainly office workers 

• But also the occasional shopper 
– Who may be from an office.. 
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The Turnstile 

• One jobless afternoon you amuse yourself by 
observing the turnstile at the station 

– Groups of people exit periodically 

– Some people are wearing casuals, others are formally 
dressed  

– Some are carrying shopping bags, other have 
briefcases 

– Was the last train an incoming train or an outgoing one 
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The Turnstile 

• One jobless afternoon you amuse yourself by observing 
the turnstile at the station 
– …. 

 

• What you know: 
– People shop in casual attire 

• Unless they head to the shop from work 

– Shoppers carry shopping bags,  people from offices carry 
briefcases 

• Usually 

– There are more shops than offices at the mall 

– There are more offices than shops in the city 

– Outbound trains follow inbound trains 
• Usually 
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Modelling the problem 

• Inbound trains (from the mall) have  
– more casually dressed people 

– more people carrying shopping bags 

•  The number of people leaving at any time may be 
small 
– Insufficient to judge 
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Modelling the problem 

• P(attire, luggage | outbound) = ? 

• P (attire, luggage | inbound ) = ? 

• P(outbound | inbound) = ? 

• P( inbound | outbound) = ? 

• If you know all this, how do you decide the direction of the train 

• How do you estimate these terms? 
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• “Probabilistic function of a markov chain” 

• Models a dynamical system 

• System goes through a number of states 
– Following a Markov chain model 

• On arriving at any state it generates observations according to 
a state-specific probability distribution 
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A Thought Experiment 

• Two “shooters” roll dice 

• A caller calls out the number rolled. We only get to hear what he calls out 

• The caller behaves randomly 

– If he has just called a number rolled by the blue shooter, his next call is that of the red shooter 
70% of the time 

– But if he has just called the red shooter, he has only a 40% probability of calling the red 
shooter again in the next call 

• How do we characterize this? 
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I just called out the 6 from the blue 

guy.. gotta switch to pattern 2.. 

6 4 1 5 3 2 2 2 … 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 



A Thought Experiment 

• The dots and arrows represent the “states” of the caller 
– When he’s on the blue circle he calls out the blue dice 

– When he’s on the red circle he calls out the red dice 

– The histograms represent the probability distribution of the numbers 
for the blue and red dice 
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A Thought Experiment 

• When the caller is in any state, he calls a number based on the 
probability distribution of that state 

– We call these state output distributions 

• At each step, he moves from his current state to another state following 
a probability distribution 

– We call these transition probabilities 

• The caller is an HMM!!! 
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What is an HMM 

• HMMs are statistical models for (causal) processes 
 

• The model assumes that the process can be in one of a number 
of states at any time instant 

 

• The state of the process at any time instant depends only on the 
state at the previous instant (causality, Markovian) 

 

• At each instant the process generates an observation from a 
probability distribution that is specific to the current state 

 

• The generated observations are all that we get to see 
–  the actual state of the process is not directly observable  

• Hence the qualifier hidden 
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• A Hidden Markov Model consists of two components 
– A state/transition backbone that specifies how many states there are, and how they can 

follow one another 

– A set of probability distributions, one for each state, which specifies the distribution of all 
vectors in that state 
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Hidden Markov Models 

• This can be factored into two separate probabilistic entities 
– A probabilistic Markov chain with states and transitions 
– A set of data probability distributions, associated with the states 

Markov chain 

Data distributions 



HMM assumed to be 

generating data 

How an HMM models a process 

state 

distributions 

state 

sequence 

observation

sequence 
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HMM Parameters 

• The topology of the HMM 

– Number of states and allowed 
transitions 

– E.g. here we have 3 states and cannot 
go from the blue state to the red 

• The transition probabilities 

– Often represented as a matrix as here 

– Tij is the probability that when in 
state i, the process will move to j 

• The probability pi of beginning at 
any state si  

– The complete set is represented as p 

• The state output distributions 



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HMM state output distributions 

• The state output distribution is the distribution of data produced from 

any state 

• Typically modelled as Gaussian 

 

 

 

• The paremeters are mi and Qi 
 

• More typically, modelled as Gaussian mixtures 

 

 
 

• Other distributions may also be used 

• E.g. histograms in the dice case 
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The Diagonal Covariance Matrix 

• For GMMs it is frequently assumed that the feature 

vector dimensions are all independent of each other 
 

• Result: The covariance matrix is reduced to a diagonal 

form 

– The determinant of the diagonal Q matrix is easy to 

compute 
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Full covariance: 
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Three Basic HMM Problems 

• What is the probability that it will generate a 
specific observation sequence 

 

• Given a observation sequence, how do we 
determine which observation was generated 
from which state 
– The state segmentation problem 

 

• How do we learn the parameters of the HMM 
from observation sequences  
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Computing the Probability of  an 
Observation Sequence 

• Two aspects to producing the observation: 

– Progressing through a sequence of states 

– Producing observations from these states 
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HMM assumed to be 

generating data 

Progressing through states 

state 

sequence 

• The process begins at some state (red) here 

• From that state, it makes an allowed transition 

– To arrive at the same or any other state 

• From that state it makes another allowed transition 

– And so on 
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Probability that the HMM will follow 
a particular state sequence 

 

• P(s1) is the probability that the process will initially be in 
state s1 

 

• P(si | si) is the transition probability of moving to state si at 
the next time instant when the system is currently in si 

– Also denoted by Tij earlier 
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HMM assumed to be 

generating data 

Generating Observations from States 

state 

distributions 

state 

sequence 

observation

sequence 

• At each time it generates an observation from the 
state it is in at that time 
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• P(oi | si) is the probability of generating 

observation oi when the system is in state si 

Probability that the HMM will generate 
a particular observation sequence given 

a state sequence  
(state sequence known) 

 

Computed from the Gaussian or Gaussian mixture for state s1 
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HMM assumed to 

be generating data 

Proceeding through States and 
Producing Observations 

state 

distributions 

state 

sequence 

observation

sequence 

• At each time it produces an observation and makes 
a transition 
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Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence 
 

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3



P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)
1 2 3 1 2 3 1 2 3


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Probability of Generating an 
Observation Sequence 

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.

1 1 2 2 3 3 1 2 1 3 2

P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.

.

1 2 3 1 2 3
P o o o( , , ,...)

1 2 3


• The precise state sequence is not known 

• All possible state sequences must be considered 
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Computing it Efficiently 

• Explicit summing over all state sequences is not 
tractable 

– A very large number of possible state sequences 

 

• Instead we use the forward algorithm 
 

• A dynamic programming technique. 
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Illustrative Example 

• Example: a generic HMM with 5 states and a “terminating 
state”.  
– Left to right topology 

• P(si) = 1 for state 1 and 0 for others 

– The arrows represent transition for which the probability is not 0 
 

• Notation: 
– P(si | si) = Tij 

– We represent P(ot | si) = bi(t) for brevity 
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Diversion: The Trellis 

Feature vectors 

(time) 

S
ta

te
 i
n
d
e
x
 

t-1 t 

s 

• The trellis is a graphical representation of all possible paths through the HMM to 
produce a given observation 

• The Y-axis represents HMM states, X axis represents observations 

• Every edge in the graph represents a valid transition in the HMM over a single 
time step  

• Every node represents the event of a particular observation being generated 
from a particular state 
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The Forward Algorithm 

time 

S
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te
 i
n
d
e
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t-1 t 

s 

• a(s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xt 
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The Forward Algorithm 

time 
t-1 t 

Can be recursively 

estimated starting 

from the first time 

instant  

(forward recursion) 
s 

S
ta

te
 i
n
d
e
x
 

• a(s,t) can be recursively computed in terms of 
a(s’,t’), the forward probabilities at time t-1  

11755/18797 40 

))(,,...,,(),( 21 ststatexxxPts t a

a(s,t) a(s,t-1) 

a(1,t-1) 

 
'

)|()'|()1,'(),(
s

t sxPssPtsts aa




s

TsTotalprob ),(a

The Forward Algorithm 

time 

S
ta

te
 i
n
d
e
x
 

T 

• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state 

• General model: The total probability of the observation is 
the sum of the alpha values at all states 
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The absorbing state 

• Observation sequences are assumed to end 
only when the process arrives at an absorbing 
state 
– No observations are produced from the absorbing 

state 
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• Absorbing state model: The total probability is the alpha 
computed at the absorbing state after the final observation 
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Problem 2: State segmentation 

• Given only a sequence of observations, how 
do we determine which sequence of states 
was followed in producing it? 
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HMM assumed to be 

generating data 

The HMM as a generator 

state 

distributions 

state 

sequence 

observation

sequence 

• The process goes through a series of states and 
produces observations from them 
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HMM assumed to be 

generating data 

state 

distributions 

state 

sequence 

observation

sequence 

• The observations do not reveal the underlying state 
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HMM assumed to be 

generating data 

state 

distributions 

state 

sequence 

observation

sequence 

• State segmentation: Estimate state sequence given 
observations 
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The state segmentation problem 
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

Estimating the State Sequence 

• Many different state sequences are capable of 
producing the observation 

 
 

• Solution: Identify the most probable  state sequence 

– The state sequence for which the probability of 
progressing through that sequence and generating the 
observation sequence is maximum 

– i.e                                                             is maximum 
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Estimating the state sequence 

• Once again, exhaustive evaluation is impossibly 
expensive 

• But once again a simple dynamic-programming 
solution is available 

 

 

 

• Needed: 

 

 

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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Estimating the state sequence 

• Once again, exhaustive evaluation is impossibly 
expensive 

• But once again a simple dynamic-programming 
solution is available 

 

 

 

• Needed: 

 

 

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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HMM assumed to be 

generating data 

The HMM as a generator 

state 

distributions 

state 

sequence 

observation

sequence 

• Each enclosed term represents one forward 
transition and a subsequent emission 
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The state sequence 

• The probability of a state sequence ?,?,?,?,sx,sy ending at 

time t , and producing all observations until ot  

– P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx) 

 

 

• The best state sequence that ends with sx,sy at t  will have 

a probability equal to the probability of the best state 

sequence ending at t-1 at sx  times P(ot|sy)P(sy|sx) 
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Extending the state sequence 

state 

distributions 

state 

sequence 

observation

sequence 

• The probability of a state sequence ?,?,?,?,sx,sy 
ending at time t and producing observations until ot 

– P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx) 
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Trellis 
• The graph below shows the set of all possible state 

sequences through this HMM in five time instants 
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The cost of extending a state 
sequence 

• The cost of extending a state sequence ending at sx is 
only dependent on the transition from sx to sy, and 
the observation probability at sy 
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The cost of extending a state 
sequence 

• The best path to sy through sx  is simply an 
extension of the best path to sx 
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time 
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sy 

sx 

BestP(o1..t-1,?,?,?,?, sx ) 

P(ot|sy)P(sy|sx) 
 



The Recursion 

• The overall best path to sy is an extension of 
the best path to one of the states at the 
previous time 
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The Recursion 

 Prob. of best path to sy =  
Maxsx 

 BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx) 
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Finding the best state sequence 

• The simple algorithm just presented is called the VITERBI 
algorithm in the literature 
– After A.J.Viterbi, who invented this dynamic programming algorithm for a 

completely different purpose: decoding error correction codes! 
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Viterbi Search (contd.) 
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time 
Initial state initialized with path-score = P(s1)b1(1) 

All other states have score 0 since P(si) = 0 for them 



Viterbi Search (contd.) 

11755/18797 61 

time 

State with best path-score 

State with path-score < best 

State without a valid path-score 

P (t) 
j 

= max [P (t-1)  t   b  (t)] 
i ij j i 

Total path-score ending up at state j at time t 

State transition probability, i to j 

Score for state j, given the input at time t 



Viterbi Search (contd.) 
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time 

P (t) 
j 

= max [P (t-1)  t   b  (t)] 
i ij j i 

Total path-score ending up at state j at time t 

State transition probability, i to j 

Score for state j, given the input at time t 



Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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Viterbi Search (contd.) 
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THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE 

SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION 



Problem3: Training HMM parameters 

• We can compute the probability of an observation, 
and the best state sequence given an observation, 
using the HMM’s parameters 

 

• But where do the HMM parameters come from? 
 

• They must be learned from a collection of 
observation sequences 
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Learning HMM parameters: Simple 
procedure – counting 

• Given a set of training instances 

• Iteratively: 

1. Initialize HMM parameters 

2. Segment all training instances 

3. Estimate transition probabilities and state 
output probability parameters by counting 
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Learning by counting example 

• Explanation by example in next few slides 
• 2-state HMM, Gaussian PDF at states, 3 observation 

sequences 
• Example shows ONE iteration 

– How to count after state sequences are obtained 
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Example: Learning HMM Parameters 

• We have an HMM with two states s1 and s2. 

• Observations are vectors xij 
– i-th sequence,  j-th vector 

• We are given the following three observation sequences 
– And have already estimated state sequences 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Initial state probabilities (usually denoted as p): 

– We have 3 observations 

– 2 of these begin with S1, and one with S2 

– p(S1) = 2/3, p(S2) = 1/3 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed by S1 X times 

– It is followed by S2 Y times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed by S2 Y times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S1 occurs 11 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 6 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs. Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 5 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 8 times 

– P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• Transition probabilities: 
– State S2 occurs 13 times in non-terminal locations 

– Of these, it is followed immediately by S1 5 times 

– It is followed immediately by S2 8 times 

– P(S1 | S2) = 5 / 13;   P(S2 | S2) = 8 / 13 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Parameters learnt so far 

• State initial probabilities, often denoted as p 

–  p(S1) = 2/3 = 0.66 

–  p(S2) = 1/3 = 0.33 
 

• State transition probabilities 

– P(S1 | S1) = 6/11 = 0.545;  P(S2 | S1) = 5/11 = 0.455 

– P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615 

– Represented as a transition matrix 
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Example: Learning HMM Parameters 

• State output probability for S1 

– There are 13 observations in S1 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• State output probability for S1 
– There are 13 observations in S1 

– Segregate them out and count 
• Compute parameters (mean and variance) of Gaussian 

output density for state S1 
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Time 1 2 6 7 9 10 

state S1 S1 S1 S1 S1 S1 

Obs Xa1 Xa2 Xa6 Xa7 Xa9 Xa10 

Time 3 4 9 

state S1 S1 S1 

Obs Xb3 Xb4 Xb9 

Time 1 3 4 5 

state S1 S1 S1 S1 

Obs Xc1 Xc2 Xc4 Xc5 

 )()(5.0exp
||)2(

1
)|( 1

1

1

1

1 1 mm
p

Q
Q

  XXSXP T

d















542194

31097621

1
13

1

ccccbb

baaaaaa

XXXXXX

XXXXXXX
m

     

     

      





















Q

...

...

...

13

1

12121111

14141313

12121111

1

T

cc

T

cc

T

bb

T

bb

T

aa

T

aa

XXXX

XXXX

XXXX

mmmm

mmmm

mmmm



Example: Learning HMM Parameters 

• State output probability for S2 

– There are 14 observations in S2 
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Time 1 2 3 4 5 6 7 8 9 10 

state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1 

Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10 

Time 1 2 3 4 5 6 7 8 9 

state S2 S2 S1 S1 S2 S2 S2 S2 S1 

Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9 

Time 1 2 3 4 5 6 7 8 

state S1 S2 S1 S1 S1 S2 S2 S2 

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8 

Observation 1 

Observation 2 

Observation 3 



Example: Learning HMM Parameters 

• State output probability for S2 
– There are 14 observations in S2 

– Segregate them out and count 
• Compute parameters (mean and variance) of Gaussian 

output density for state S2 
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Time 3 4 5 8 

state S2 S2 S2 S2 

Obs Xa3 Xa4 Xa5 Xa8 

Time 1 2 5 6 7 8 

state S2 S2 S2 S2 S2 S2 

Obs Xb1 Xb2 Xb5 Xb6 Xb7 Xb8 

Time 2 6 7 8 

state S2 S2 S2 S2 

Obs Xc2 Xc6 Xc7 Xc8 
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We have learnt all the HMM parmeters 

• State initial probabilities, often denoted as p 

–  p(S1) = 0.66             p(S2) = 1/3 = 0.33 
 

• State transition probabilities 
 

 

 

• State output probabilities 
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









615.0385.0

455.0545.0
A

State output probability for S1 State output probability for S2 
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Update rules at each iteration 

• Assumes state output PDF = Gaussian 
– For GMMs, estimate GMM parameters from collection of observations 

at any state 
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 Initialize all HMM parameters 

 

 Segment all training observation sequences into states using the Viterbi 

algorithm with the current models 

 

 Using estimated state sequences and training observation sequences, 

reestimate the HMM parameters 

 

 This method is also called a “segmental k-means” learning procedure 

Training by segmentation: Viterbi 
training 

11755/18797 

Initial  
models Segmentations Models Converged? 

yes 

no 



Alternative to counting: SOFT 
counting 

• Expectation maximization 

• Every observation contributes to every state 
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Update rules at each iteration 

• Every observation contributes to every state 
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sequencesn observatio of no. Total
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Update rules at each iteration 

• Where did these terms come from? 
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sequencesn observatio of no. Total
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),...,,,)(( 21 Ti xxxststateP 

• The probability that the process was at s when 
it generated Xt  given the entire observation 

• Dropping the “Obs” subscript for brevity 

 

 

• We will compute                                                     
first 

– This is the probability that the process visited s at 
time t while producing the entire observation 
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• The probability that the HMM was in a particular state s when 
generating the observation sequence  is the probability that it 
followed a state sequence that passed through s at time t 
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s 

time 
t 

),...,,,)(( 21 TxxxststateP 



• This can be decomposed into two multiplicative sections 
– The section of the lattice leading into state s at time t and the section 

leading out of it 
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s 

time 
t 
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The Forward Paths 
• The probability of the red section is the total probability of all 

state sequences ending at state s at time t 

– This is simply a(s,t) 

– Can be computed using the forward algorithm 
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time 
t 

s 



The Backward Paths 
• The blue portion represents the probability of all state 

sequences that began at state s at time t 
– Like the red portion it can be computed using a backward recursion 
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time 
t 



The Backward Recursion 

t+1 

s 

t 

Can be recursively 

estimated starting 

from the final time 

time instant 

(backward recursion) 

time 

• b(s,t) is the total probability of ALL state sequences that 
depart from s at time t, and all observations after xt 

– b(s,T) = 1 at the final time instant for all valid final states 
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The complete probability 

t+1 t t-1 

s 

time 

a(s,t-1) b(s,t) 

b(N,t) 

a(s1,t-1) 

))(,,...,,(),(),( 21 ststatexxxPtsts Ttt  ba
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Posterior probability of a state 

• The probability that the process was in state s 
at time t, given that we have observed the 
data is obtained by simple normalization 

 

 

 

• This term is often referred to as the gamma 
term and denoted by gs,t 
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Update rules at each iteration 

• These have been found 
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sequencesn observatio of no. Total
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Update rules at each iteration 

• Where did these terms come from? 
11755/18797 104 

sequencesn observatio of no. Total
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s’ 

time 

t 

),...,,,')1(,)(( 21 TxxxststateststateP 

s 

t+1 
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s’ 

time 

t 
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s 
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),( tsa
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s’ 
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t 
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The a posteriori probability of 
transition 

• The a posteriori probability of a transition 
given an observation 
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Update rules at each iteration 

• These have been found 
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sequencesn observatio of no. Total
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State 
association 
probabilities 

Initial  
models 

 Every feature vector associated with every state of every HMM with a 

probability 

 

 

 

 

 

 Probabilities computed using the forward-backward algorithm 

 Soft decisions taken at the level of HMM state 

 In practice, the segmentation based Viterbi training is much easier to 

implement and is much faster 

 The difference in performance between the two is small, especially if we have 

lots of training data 

Training without explicit segmentation: 
Baum-Welch training 
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Models Converged? 
yes 

no 



HMM Issues 

• How to find the best state sequence: Covered 

• How to learn HMM parameters: Covered 

• How to compute the probability of an 
observation sequence: Covered 
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Magic numbers 

• How many states: 

– No nice automatic technique to learn this 

– You choose 

• For speech, HMM topology is usually left to right (no 
backward transitions) 

• For other cyclic processes, topology must reflect nature 
of process 

• No. of states – 3 per phoneme in speech 

• For other processes, depends on estimated no. of 
distinct states in process 
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Applications of HMMs 

• Classification: 
– Learn HMMs for the various classes of time series 

from training data 

– Compute probability of test time series using the 
HMMs for each class 

– Use in a Bayesian classifier 

– Speech recognition, vision, gene sequencing, 
character recognition, text mining… 

• Prediction 

• Tracking 
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Applications of HMMs 

• Segmentation: 

– Given HMMs for various events, find event 
boundaries 

• Simply find the best state sequence and the locations 
where state identities change 

 

• Automatic speech segmentation, text 
segmentation by topic, geneome 
segmentation, … 
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