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Prediction : a holy grail

Physical trajectories
— Automobiles, rockets, heavenly bodies

Natural phenomena
— Weather

Financial data
— Stock market

World affairs
— Who is going to have the next XXXX spring?

Signals

— Audio, video..
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A Common Trait

Series data with trends
Stochastic functions of stochastic functions (of stochastic functions of ...)

An underlying process that progresses (seemingly) randomly
— E.g. Current position of a vehicle
— E.g. current sentiment in stock market
— Current state of social/economic indicators

Random expressions of underlying process
— E.g what you see from the vehicle
— E.g. current stock prices of various stock

— E.g. do populace stay quiet / protest on streets / topple dictator..
11755/18797 3



* [earn about the process

— From whatever they know

— Basic requirement for other
procedures

* Track underlying processes

 Predict future values
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A Specific Form of Process..

Doubly stochastic processes ®—>®

One random process generates an X
— Random process X 2 P(X; ®)

Second-level process generates observations
as a function of X

Random process Y =2 P(Y; f(X, A))
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Doubly Stochastic Processes

* Doubly stochastic processes
are models

— May not be a true representation
of process underlying actual data

* First level variable may be a quantifiable variable
— Position/state of vehicle
— Second level variable is a stochastic function of position
* First level variable may not have meaning
— “Sentiment” of a stock market
— “Configuration” of vocal tract
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Stochastic Function of a Markov Chain

First-level variable is usually abstract

CO—(v

The first level variable assumed to be the output of a
Markov Chain

The second level variable is a function of the output of the
Markov Chain

Also called an HMM

Another variant — stochastic function of Markov process
— Kalman Filtering..
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Markov Chain

o
I/
© ©

Process can go through a number of states

— Random walk, Brownian motion..
From each state, it can go to any other state with a probability
— Which only depends on the current state
Walk goes on forever
I

— Or until it hits an “absorbing wal

Output of the process — a sequence of states the process went
through

MLSP
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Stochastic Function of a Markov Chain

* Output:
—Y 2> P(Y; f([sy, S5, ...], A))
e Specific to HMM:
—Y==V,Y,..
—Y. > P(Y,; f(s,), A)
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Stochastic function of Markov Chains
(HMMS)

Problems:

Learn the nature of the process from data
Track the underlying state

— Semantics
Predict the future

P

Procesing (z:1



MLSP

Vichielzaming for SaraProcessing Gt

Fun stuff with HMMis..




The little station between the mall and”
the city

* A little station between the city and a mall

— Inbound trains bring people back from the mall
* Mainly shoppers

* Occasional mall employee
— Who may have shopped..

— Outbound trains bring back people from the city

e Mainly office workers

* But also the occasional shopper
— Who may be from an office..
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The Turnstile

* One jobless afternoon you amuse yourself by
observing the turnstile at the station
— Groups of people exit periodically

— Some people are wearing casuals, others are formally
dressed

— Some are carrying shopping bags, other have
briefcases

— Was the last train an incoming train or an outgoing one

95
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The Turnstile

* One jobless afternoon you amuse yourself by observing
the turnstile at the station

 What you know:

— People shop in casual attire
* Unless they head to the shop from work

— Shoppers carry shopping bags, people from offices carry
briefcases

e Usually
— There are more shops than offices at the mall

— There are more offices than shops in the city

— Qutbound trains follow inbound trains
e Usually
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Modelling the problem

Inbound Outbound

e Inbound trains (from the mall) have
— more casually dressed people
— more people carrying shopping bags
* The number of people leaving at any time may be
small

— Insufficient to judge

11755/18797 15
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Modelling the problem

Inbound Outbound

\_/

P(attire, luggage | outbound) =7

P (attire, luggage | inbound ) =7

P(outbound | inbound) =7?

P(inbound | outbound) ="

If you know all this, how do you decide the direction of the train

How do you estimate these terms?

11755/18797 16
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What is an HMM

A A

“Probabilistic function of a markov chain”
Models a dynamical system
System goes through a number of states

— Following a Markov chain model

On arriving at any state it generates observations according to
a state-specific probability distribution

11755/18797 17
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A Thought Experiment

| just called out the 6 from the blue
~ guy.. gotta switch to pattern

63154124 .. 44163212..
Two “shooters” roll dice
A caller calls out the number rolled. We only get to hear what he calls out
The caller behaves randomly

— If he has just called a number rolled by the blue shooter, his next call is that of the red shooter
70% of the time

— But if he has just called the red shooter, he has only a 40% probability of calling the red
shooter again in the next call

: -
How do we characterize this- 175518797 "



P(X | blue)

A Thought Experiment

0.3 . 0.4
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 The dots and arrows represent the “states” of the caller
— When he’s on the blue circle he calls out the blue dice
— When he’s on the red circle he calls out the red dice

— The histograms represent the probability distribution of the numbers
for the blue and red dice

11755/18797
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A Thought Experiment

0.3 . 0.4

When the caller is in any state, he calls a number based on the
probability distribution of that state

— We call these state output distributions

At each step, he moves from his current state to another state following
a probability distribution
— We call these transition probabilities

The caller is an HMM!!!

11755/18797 20
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What is an HMIM

HMMs are statistical models for (causal) processes

The model assumes that the process can be in one of a number
of states at any time instant

The state of the process at any time instant depends only on the
state at the previous instant (causality, Markovian)

At each instant the process generates an observation from a
probability distribution that is specific to the current state

The generated observations are all that we get to see

— the actual state of the process is not directly observable
* Hence the qualifier hidden
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Hidden Markov Models

* A Hidden Markov Model consists of two components

— A state/transition backbone that specifies how many states there are, and how they can
follow one another

— A set of probability distributions, one for each state, which specifies the distribution of all

vectors in that state

| A A

e This can be factored into two separate probabilistic entities
— A probabilistic Markov chain with states and transitions

— A set of data probability distributions, associated with the states
11755/18797
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How an HMM models a process

HMM assumed to be
generating data

state
seqguence Q—>Q—>C—>Q—>C—>Q—>C—>C—>.—>Q—>C—>C—>O—>Q—>O—>Q—>.

VVVVVVVVVVVVVVVVV

state A AA AAAAAAAAAAAAA

"‘“”““"”SHJHHHHHHH

observation
seguence

11111111111



HMM Parameters
0.6

The topology of the HMM

— Number of states and allowed
transitions

— E.g. here we have 3 states and cannot
go from the blue state to the red

The transition probabilities
— Often represented as a matrix as here

— T is the probability that when in
state i, the process will move to j

The probability wr; of beginning at
any state s,
— The complete set is represented as

The state output distributions

11755/18797
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HMM state output distributions

The state output distribution is the distribution of data produced from
any state

Typically modelled as Gaussian
1 S ECTNERET

(Zﬂ)d ‘®i‘

P(x|s,) = Gaussian(x; x,®,) =

The paremeters are p; and ®,

More typically, modelled as Gaussian mixtures

K1
P(x|s;) =) w Gaussian(x; 4 ;, O, ;)
j=0
» Other distributions may also be used
« E.g. histograms in the dice case
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The Diagonal Covariance Matrix

Diagonal covariance:

Full covariance: _
off-diagonal elements

all elements are
non-zero

are zero

-0.5(x-W) T@(x-p) -3 (x-w)? / 2062

 For GMM:s it is frequently assumed that the feature
vector dimensions are all independent of each other

* Result: The covariance matrix is reduced to a diagonal
form
— The determinant of the diagonal ® matrix is easy to
compute
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Three Basic HMM Problems

 What is the probability that it will generate a
specific observation sequence

* Given a observation sequence, how do we
determine which observation was generated
from which state

— The state segmentation problem

* How do we learn the parameters of the HMM
from observation sequences
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Computing the Probability of an
Observation Sequence

* Two aspects to producing the observation:
— Progressing through a sequence of states
— Producing observations from these states
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Progressing through states

AQ @ 2
HMM assumed to be
generating data

AL A

state
sequence —0—0—-0—/0—-0-0-0 000000000

* The process begins at some state (red) here
* From that state, it makes an allowed transition

— To arrive at the same or any other state

e From that state it makes another allowed transition

— And so on

11755/18797 29



Probability that the HMM will follow ™
a particular state sequence

P(Sl’S S "):P(Sl)P(Szlsl)P(Sslsz)"'

21931

* P(s,) is the probability that the process will initially be in
state s,

* P(s;[s;) is the transition probability of moving to state s; at
the next time instant when the system is currently in s,

— Also denoted by T; earlier

11755/18797 30
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Generating Observations from States
AQ @ M

HMM assumed to be
generating data
AL A

state
sequence000000000000.0000

V V

state AA'AAAAAA)A'ALL Addd
N
SRR

distributions J l
| |

observation
seguence

* At each time it generates an observation from the
state it is in at that time

11755/18797 31



Probability that the HMM will generate ™M=*
a particular observation sequence given
a state sequence
(state sequence known)

P(0,,0,,0,,--.5,,5,,5,.) = P(0,]5,) P(0,]5,) P(0,]5,)-..

I

Computed from the Gaussian or Gaussian mixture for state s,

* P(o;| s)) Is the probability of generating
observation o, when the system is in state s,

11755/18797 32



Proceeding through States and MLSE
Producing Observations

=

sequence Q—>.—>Q—>Q—>C—>Q—>C—>C—>.—>Q—>Q—>C—>O—>Q—>C—>Q—>.

HMM assumed to
be generating data

state AA AA AAAAAAAAAAAAA

dis”ib”m”SHHHHHHHlH
LTI

observation
sequence 1 | 1 1 1111
e At each time it produces an observation and makes
a transition

11755/18797 33
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Probability that the HMM will generate a

particular state sequence and from it, a
particular observation sequence

P(o,,0,,0.,...,5,,S,,S,,...) =
P(0,,0,,0,,...1S,,S,,S;,...) P(S,,S,,S;,...) =

21%=31° 217317

P(0,[s,)P(0,[s,) P(0;ls,)... P(s) P(S,[s,) P(s,]s, )...

11755/18797 34
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Probability of Generating an
Observation Sequence

* The precise state sequence is not known
* All possible state sequences must be considered

P(o,,0,,0,,...)= > P(0,,0,,0,,...,5,,5,,S;,...) =

all .possible
state.sequences

> P(08,)P(0,[s,) P(0,]s,)... P(s) P(8,]3,) P(syls,).

all.possible
state.sequences

11755/18797 35
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Computing it Efficiently

* Explicit summing over all state sequences is not
tractable
— A very large number of possible state sequences

* |Instead we use the forward algorithm

* A dynamic programming technique.
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lllustrative Example

* Example: a generic HMM with 5 states and a “terminating
state”.

— Left to right topology
* P(s;) =1 for state 1 and O for others

— The arrows represent transition for which the probability is not 0

* Notation:
- P(5i|5i)=Tij
— We represent P(o, | s;) = b,(t) for brevity



State index
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Divers%on:(')l‘he Trellis

) O
) O
)@ als,t)
)y O

O0—0 Feature vectors

_ t_
I

»
»

The trellis is a graphical representation of all possible paths through the HMM to
produce a given observation

The Y-axis represents HMM states, X axis represents observations

Every edge in the graph represents a valid transition in the HMM over a single
time step

Every node represents the event of a particular observation being generated
from a particular state

11755/18797 38
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The Forward Algorithm
a(s,t) =P(Xx, X,,..., X, state(t) = s)

O O
© O
g O O
g O ® ofs)
Z O/ @
O {t)l (_t) > time

e ofs,t) is the total probability of ALL state
sequences that end at state s at time t, and
all observations until x,

11755/18797 39
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The Forward Algorithm
a(s,t) =P(Xx, X,,..., X, state(t) = s)

O O
© O
O O first
a(s,t-1) O ® oSy forward recursion
O O
a(Lt-1) O—0 ~ time

a(s,t) = Za(st DP(s|s)P(x |s)

o(s,t) can be recursively computed in terms of
o(s’,t’), the forward probabilities at time t-1

11755/18797 40
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The Forward Algorithm
Totalprob = > a(s, T)

U U > time
T

In the final observation the alpha at each state gives the
probability of all state sequences ending at that state

General modelT The total probability of the observation is
the sum of the alpha values at all states
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The absorbing state

ARNA
X

AAAAA

v v v

* Observation sequences are assumed to end
only when the process arrives at an absorbing
state

— No observations are produced from the absorbing
state



State index

The Forward Algorithm

Totalprob = a (S peoming T +1) .0

o> —90 —9 —9

:u :u :u :u > .
T  tme

a(sabsorbing’T +1) — Za(SI’T)P(Sabsorbing| S')

Absorbing state model: The total probability is the alpha
computed at the absorbing state after the final observation

11755/18797
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Problem 2: State segmentation

* Given only a sequence of observations, how
do we determine which sequence of states
was followed in producing it?
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The HMM as a generator

AQ @ 2
HMM assumed to be
generating data

AL A

state

o AAAAAmAadAakadidd
TTTITTTIITI T
I 11 11111

observation I I I I I I I I

segquence
* The process goes through a series of states and
produces observations from them

11755/18797 45
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States are hidden

AQ @ 2
HMM assumed to be
A

generating data

state
sequence

state
distributions

observation
seguence

A
SRR NN

 The observations do not reveal the underlying state

11755/18797 46
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The state segmentation problem

AQ @ 2
HMM assumed to be
generating data

AL A

state
sequence " —0 000000000000 ->0—->0—0

== T

werrer=sui AL N O O O O
sequence

* State segmentation: Estimate state sequence given
observations

11755/18797 a7
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Estimating the State Sequence

* Many different state sequences are capable of
producing the observation

* Solution: Identify the most probable state sequence

— The state sequence for which the probability of
progressing through that sequence and generating the
observation sequence is maximum

— l.e P(O 0..0 S S .S ) IS maximum

11921933919 393y
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Estimating the state sequence

* Once again, exhaustive evaluation is impossibly
expensive

* But once again a simple dynamic-programming
solution is available

P(o,,0,,0.,...,S,,S,,S,,...) =
P(0,[s,) P(0,]s,) P(0;]S;)... P(s,) P(s,s,) P(S;[S, )---

* Needed:

arg max P(0,|5,)P(s,)P(0; | S,)P(s; | 5)P(0; | 55)P(s; | 5,)

$1,59,53 -

11755/18797 49
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Estimating the state sequence

* Once again, exhaustive evaluation is impossibly
expensive

* But once again a simple dynamic-programming
solution is available

P(0,,0,,0,,...,5,,S,,S,,...) =
P(0,|s,)P(0,|s,)P(0,[s,)... P(s,) P(s,|s,) P(S,]S,)...

* Needed:
arg maXS]_,S2,S3,---P(03 | 33)P(S3 S,)

11755/18797 50
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The HMM as a generator

AQ @ 2
HMM assumed to be
generating data

AL A

state
sequence .—».—».—»‘-»‘-»’—»‘—».—»‘—».—»@—».—».—»‘—».—»‘

%butions : A A‘ AAAA“‘HAHAYAY
A
observatlonl I I I I I I I I I I\!}

segquence
* Each enclosed term represents one forward
transition and a subsequent emission

11755/18797 51
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The state sequence

» The probability of a state sequence ?,?,?,7,s,,s, ending at
time t, and producing all observations until o,
— P(0y 11, 7,227, 8¢, 048y) = POy, 1,7,2,2,2, 5, ) P(0{s,)P(s,[s,)

» The best state sequence that ends with s,,s, at t will have
a probability equal to the probability of the best state
sequence ending at t-1 at s, times P(0ys,)P(s,|s,)
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Extending the state sequence

B

_u Adhdiii AdMmaddi

SLLLEEEL LRI

gzzﬁgvna;;’”ll|||||||||\|]|||||
N

t

* The probability of a state sequence ?,?,?,?,s, S,
ending at time t and producing observations unt|I 0,
— P(0y 11,00 7,2,2,2,5,,8,) = P(01 1.1,%,2,2,2, 5, )P(0{ls)P(s,[s,)
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Trellis

 The graph below shows the set of all possible state

sequences through this HMM in five time instants

L LI
L PP LA

A A
L

) > time
t
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The cost of extending a state

sequence

* The cost of extending a state sequence ending at s, is
only dependent on the transition from s, to s, and
the observation probability at s,

O O O O
‘ P(Otlsy) P(Sylsx)

L 7T

\ \ ), \ ), \ ), - time

Vichielzaming for SaraProcessing Gt



The cost of extending a state e

sequence

* The best path to s, through s, is simply an
extension of the best path to s,

BestP(0,; {1,7,7,7,?, S, )
P(Otlsy)P(Sylsx)

> time

11755/18797 56
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The Recursion

* The overall best path to s, is an extension of
the best path to one of the states at the
previous time

——) «uumuw -}‘ Sy
/ i
# ﬁ o* ’.0.
—_—

y > time
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The Recursion

= Prob. of best path to s, =
Max, BestP(0, .1,7,2,7,%, 5,) P(0{s,)P(s,[s,)

y > time

11755/18797 58
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Finding the best state sequence

* The simple algorithm just presented is called the VITERBI
algorithm in the literature

— After A.J.Viterbi, who invented this dynamic programming algorithm for a
completely different purpose: decoding error correction codes!

11755/18797 59
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Viterbi Search (contd.)

ASSS e

Initial state initialized with path-score = P(S;)b,(1)

® OO0 00O

> time
All other states have score 0 since,P(S;) = O for them "
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Viterbi Search (contd.)

@ State with best path-score

(O State with path-score < best
@)
P.

State without a valid path-score

() = max [R (1) t; b; (O]

State transition probability, i to |

Score for state j, given the input at time t
Total path-score ending up at state j at time t

O OO00O0

> time
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Viterbi Search (contd.)

pSSS s

O ® O Pj(t) = max [B (t-1) t; b ()]

I
<> <> CD State transition probability, i to j
O O O Score for state j, given the input at time t
Total path-score ending up at state j at time t
O O b
O é EQ O

O > time

11755/18797 62



MLSP

Viterbi Search (contd.)

pSSS s

O O O
© © O
O <>/ O
o & /0
2/@/40

o—O

> time
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Viterbi Search (contd.)

pSSS S

O O O O
@ © O ©
O <>/ O O
0 Zc') O
2/( ®
@——O

O > time

11755/18797 64




MLSP

Viterbi Search (contd.)

O
O
O
O

(M __ (M
v U U JdJ

K
‘r\
("\\
O—@

() ()M

I\\K
()
X
() ()
AN AN

> time
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Viterbi Search (contd.)

pSe Sy

) O

C

Z/Q /. C

/C C
time
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Viterbi Search (contd.)

O
O
O
o0
o0
@O
O

(M __ (M
v U U JdJ
() ()M
\\\J
I\i

()
-

'&
‘f\
OQ\
O—0O
5O
((u

C

Z/Q /. C

/C C
time
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Viterbi Search (contd.)

O
O
O
O
O
O

@ © O 0 O
O O/@ /Q /o/o
0O /c <’>// o0
2/( o/ /@ '®
O QO ( QO (O time
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Viterbi Search (contd.)

Q00O
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Viterbi Search (contd.)

MLSP

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE

SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

o

I\

O O O 0O O
@ 6 o0 0O ©
O O/ o /o /.
s VIV,
REZZ.
@ —O0——O0F—0

N

11755/18797
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Problem3: Training HMM parameters

 We can compute the probability of an observation,
and the best state sequence given an observation,
using the HMM’s parameters

* But where do the HMM parameters come from?

* They must be learned from a collection of
observation sequences
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Learning HMM parameters: Simple ;
procedure — counting

* Given a set of training instances
* |teratively:

1. Initialize HMM parameters

2. Segment all training instances

3. Estimate transition probabilities and state
output probability parameters by counting
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Learning by counting example

Explanation by example in next few slides

2-state HMM, Gaussian PDF at states, 3 observation
sequences

Example shows ONE iteration
— How to count after state sequences are obtained

as_ pA

11755/18797 73




Example: Learning HMM Parameters

. We have an HMM with two states s1 and s2.
. Observations are vectors X;

— i-th sequence, j-th vector

. We are given the following three observation sequences

Observation 1

Observation 2

Observation 3

And have already estimated state sequences

MLSP

Vichielzaming for SaraProcessing Gt

g —pA

Time |1 2 3 4 5 6 7 8 9 10
state [S1 |S1 [S2 |S2 |S2 [(S1 |S1 [S2 |S1 |[S1
ObS xa1 xa? xa’% xaA Xa'% xaﬁ Xa? xaR xaq Xm 0
Time |1 2 3 4 5 6 7 8 9

state [S2 |S2 [S1 |S1 |S2 |[S2 |S2 [S2 |S1

Obs | Xy [ Xy [ Xz 1 X [ Xps [ XK 1 Xz [ Xig | Xig

Time |1 2 3 4 5 6 / 8

state [S1 |S2 [S1 |S1 |S1 [S2 |S2 |[S2

ObS xr‘1 X(‘? Xr‘? X(‘A X("'_) Xr‘ﬁ Xr‘7 X(‘R

11755/18797
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Example: Learning HMM Parameters

* Initial state probabilities (usually deno

Ated ﬁ) A

— We have 3 observations
— 2 of these begin with S1, and one with S2

— n(S1)=2/3, n(S2)=1/3

Observation 1

Observation 2

Observation 3

MLSP

Vichielzaming for SaraProcessing Gt
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Tim 3 4 5 6 7 8 9 10
stat 1 |S2 [S2 |S2 |S1 [S1 |S2 |S1 |[S1
ObS al xa? Xa’% Xad xa'% Xaﬁ xa? xaP. xaq xa1 0

3 4 5 6 7 8 9

S1 |S1 [S2 |[S2 [S2 [|S2 |[S1

Koz [ XKpa | X | Kog [ Xz | Xig | Kiyg

3 4 5 6 / 8

S1 |S1 |S1 |[S2 [S2 |[S2

Xr‘? X(‘A X("'_) Xr‘ﬁ Xr7 X(‘R
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Example: Learning HMM Parameters

Transition probabilities:

— State S1 occurs 11 times in non-terminal locations

Observation 1

Observation 2

Observation 3

11755/18797 76
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Example: Learning HMM Parameters

5 » A BA
Transition probabilities:

— State S1 occurs 11 times in non-terminal locations
—  Of these, it is followed immediately by S1 6 times

—

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters

° Transition probabilities: AQ‘

— State S1 occurs 11 times in non-terminal locations
—  Of these, it is followed immediately by S1 6 times
—  ltis followed immediately by S2 5 times

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters

Transition probabilities: AQA

—  State S1 occurs 11 times in non-terminal locations
—  Of these, it is followed immediately by S1 6 times
— Itis followed immediately by S2 5 times

— P(S1|S1)=6/11; P(S2|S1)=5/11

Time |1 2 3 4 5 6 7 8 9 10
state [S1 |S1 [S2 |S2 |S2 [(S1 |S1 [S2 |S1 |[S1
ObS xa1 xa? xa’% xaA Xa'% xaﬁ Xa? xaR xaq Xm 0

Observation 1

Time |1 2 3 4 5 6 7 8 9
Observation 2 state [S2 |S2 |[S1 |S1 |[S2 |S2 |[S2 |S2 |S1
Obs | Xt [ Xip [ Xz 1 Xoa [ Xis [ Xig | Xz [ Kpa | Xig

Time |1 2 3 4 5 6 7 8
Observation 3 state | S1 S2 S1 S1 S1 S2 S2 S2
ObS xr‘1 X(‘? Xr‘? X(‘A X("'_) Xrﬁ Xr7 ng
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Example: Learning HMM Parameters

. Transition probabilities: AQA

— State S2 occurs 13 times in non-terminal locations

Time |1 |2 Jri~ ot~ 6 |7 [0 [10
state |S1 |S1 @?a?& S1 |S1 @ S1 |s1
a8

Obs. xa1 xa? a3 ad ah xa6 Xa? xaq x?ﬂ 0

Time
Observation 2 state Qg a).
Obs Xz
Time | 1 3 4 5 G .
Observation 3 state | S1 @Sl S1 |81 1@0@09A
ObS xr‘1 c2 | Xr‘? X(‘A X("'_) Nch c7 c8

11755/18797 80
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Example: Learning HMM Parameters

A BA
Transition probabilities:

— State S2 occurs 13 times in non-terminal locations
—  Of these, it is followed immediately by S1 5 times

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters

Transition probabilities: AQA

— State S2 occurs 13 times in non-terminal locations
—  Of these, it is followed immediately by S1 5 times
— ltis followed immediately by S2 8 times

Time | 1 9 ]10
. state | S1 S1 S1
Observation 1 Obs | X_. =T | X,

Observation 2

Time |1 3 4
Observation 3 state | S1 S1 |S1
ObS xr‘1 c? Xr"% XrA
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Example: Learning HMM Parameters

Transition probabilities: AQA

—  State S2 occurs 13 times in non-terminal locations
—  Of these, it is followed immediately by S1 5 times
— Itis followed immediately by S2 8 times

— P(S1|S2)=5/13; P(S2|S2)=8/13

Time |1 2 3 4 5 6 7 8 9 10
state [S1 |S1 [S2 |S2 |S2 [(S1 |S1 [S2 |S1 |[S1
ObS xa1 xa? xa’% xaA Xa'% xaﬁ Xa? xaR xaq Xm 0

Observation 1

Time |1 2 3 4 5 6 7 8 9
Observation 2 state [S2 |S2 |[S1 |S1 |[S2 |S2 |[S2 |S2 |S1
Obs | Xt [ Xip [ Xz 1 Xoa [ Xis [ Xig | Xz [ Kpa | Xig

Time |1 2 3 4 5 6 7 8
Observation 3 state | S1 S2 S1 S1 S1 S2 S2 S2
ObS xr‘1 X(‘? Xr‘? X(‘A X("'_) Xrﬁ Xr7 ng
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Parameters learnt so far

e State initial probabilities, often denoted as ©t
— 1(S1)=2/3=0.66
— m(S2)=1/3=0.33

e State transition probabilities
— P(S1|S1)=6/11=0.545; P(S2 | S1) =5/11 =0.455
— P(S1]S2)=5/13=0.385; P(S2 | S2) =8/13 =0.615
— Represented as a transition matrix
. P(S1|S1) P(S2|S1)\ (0.545 0.455
- [P(Sl| S2) P(S2 sz)j E [0.385 O.615j

Each row of this matrix must sum to 1.0
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Example: Learning HMM Parameters

 State output probability for S1
ag_pA

— There are 13 observations in S1

Time |1 2 3 4 5 6 7 8 9 10
state |S1 |S1 |S2 |[S2 [S2 [S1 |S1 |S2 |S1 |S1
ObS xa1 Xa? xa’% xaA Xa'% Xaﬁ Xa? xaR XaQ Xa1 0

Observation 1

Time |1 2 3 4 5 6 7 8 9
Observation 2 state | S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs | Xyt [ Xip [ Xz 1 Xoa [ Xis | Xog | Xz [ Xpa | Xig

Time |1 2 3 4 5 6 7 8
Observation 3 state | S1 S2 S1 S1 S1 S2 S2 S2
ObS XM X(‘? Xr"% Xr‘A Xr’% Xrﬁ Xr7 ng
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Example: Learning HMM Parameters

State output probability for S1
There are 13 observations in S1
Segregate them out and count

AQA

Compute parameters (mean and variance) of Gaussian
output density for state S1

1

P(X]S,) =

exp|-0.5(X — z4)" O (X — 14,)
J@r)'|e,| ( )

Xb4+Xb9+Xcl+xcz_|_Xc4_|_xc5 J

[Xal + X.512 + Xa6 + Xa? + Xa9 + XalO + sz +

Time |1 2 6 7 9 10
state | S1 S1 S1 S1 S1 S1
ObS xa1 Xa? Xaﬁ Xa? Xaq Xam
Time | 3 4 9 1
state | S1 S1 S1 = —
Obs | Xz [ X [Xio 13
Time |1 |3 [4 |5 o -1
state |[S1 |S1 |S1 |[S1 1713
Obs XM X(‘? X(‘A Xr'%

(Xal _lul)(xal _:ul)T +(xa2 _lu“l)(xa2 _:u”l)T
T

(Xb3 _M)(sz _:ui)T +(Xb4 _MXXM _M)

+...
ST
(Xcl _:Lﬁ)(xcl _,Ul)T +(Xc2 _ﬂl)(xcz _:ul)T ...
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Example: Learning HMM Parameters

 State output probability for S2
ag_pA

— There are 14 observations in S2

Time |1 2 3 4 5 6 7 8 9 10
state |S1 |S1 |S2 |[S2 [S2 [S1 |S1 |S2 |S1 |S1
ObS xm xa? Xa’% XaA Xa% xaﬁ Xa? XaR Xaq xa1 0

Observation 1

Time |1 2 3 4 5 6 7 8 9
Observation 2 state | S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs | X [ Xip | Xpz | Xos [ Xig 1 Xig | Xz [ Xia | Xig

Time |1 2 3 4 5 6 7 8
Observation 3 state | S1 S2 S1 S1 S1 S2 S2 S2
ObS xf‘1 xF? Xr‘? X(‘A X("'_) Xr‘ﬁ Xr‘? XrR
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Example: Learning HMM Parameters

State output probability for S2

There are 14 observations in S2

g —pA

Segregate them out and count

. Compute parameters (mean and variance) of Gaussian
output density for state S2

1

Time | 3 4 5 8

ObS Xa’% XaA Xa% XaR

Time |1 2 5 6 7 8

state |[S2 |S2 |S2 |[S2 |S2 |S2

Obs [ Xy [ X [Xps [Xpe [ Xpz | Xig

Time ]2 16 17 |8 Y

state |S2 [S2 ([S2 [S2

ObS Xr‘? Xrﬁ xr? x(‘R @ 1
1

14

exp|-0.5(X _/Jz)T @51()( — )
\ (277)d |9, | ( )

1 ( X+ X+ X g+ X g+ X+ X, + X o+
><b6 + Xb? + ><b8 + XCZ + X06 + xc? + XCS

((Xa3 _luz)(xas _/Uz)T +)
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We have learnt all the HMM parmetersmm

e State initial probabilities, often denoted as ©t
— 7(S1) =0.66 n(S2) =1/3=0.33

e State transition probabilities

. 0.545 0.455
- 10.385 0.615

e State output probabilities

State output probability for S1 State output probability for S2

1 1 T -1
P(X|S))= —-0.5(X - T@Il X — P(X|[S,)= 5 expl—0.5(X —11,) O (X —11,)
(X]8) = ——5s exp(~0.5(X — 1) O;1(X 1)) o] ( )

11755/18797 89



Update rules at each iteration

No.of observation sequences that start at states.

7(s) = :
| Total no. of observation sequences

221t 2 2 Xy

bs t:state(t)=s; .& state(t+1)=s; obs t:state(t)=s;

P(s;|s)=" ’ 1 = |

J | [

1 2 210

% t:sta}t):si : obs t:state(t)=s;.

Z Z(Xobs,t _lui)(xobs,t _/ui)T

@ __ Obs tistate(t)=s;
| 2 210
obs t:state(t)=s;.
* Assumes state output PDF = Gaussian

MLSP

Vichielzaming for SaraProcessing Gt

— For GMMs, estimate GMM parameters from collection of observations

at any state
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Training by segmentation: Viterbi ™
training

= . Jes
'm”g'(ﬁ"éB Segmentations Models

no

v

¢ |Initialize all HMM parameters

¢ Segment all training observation sequences into states using the Viterbi
algorithm with the current models

¢ Using estimated state sequences and training observation sequences,
reestimate the HMM parameters

¢ This method is also called a “segmental k-means” learning procedure

11755/18797
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Alternative to counting: SOFT
counting

* Expectation maximization
e Every observation contributes to every state

11755/18797 92
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Update rules at each iteration

D P(state(t =1) = si | Obs)

7Z'(S-) — Obs
| c
Total no. of observation sequences

> P(state(t) = s;, state(t +1) = s, | Obs)

P(s; 18) =2 > P(state(t) = s, | Obs)
D > P(state(t) ='s; | ObS) X g,

:Obs t

> > P(state(t) =; | Obs)

ZZ P(state(t) = s; | ObS)(X gy = £4)(Kops, — 1)
= > P(state(t) = s, | Obs)

Obs t

* Every observation contributes to every state

H,
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Update rules at each iteration

7(s) = _
(5) Total no. of observation sequences

> > @(state(t) =s;, state(t + @
P(SJ— |Si) — Obs t

SS"P(state(t) = s, | Obs)

Obs t
D Y (P(state(t) ='s; | ObS)X gps
— Obs t

> > P(state(t) =; | Obs)
>3 Elstate(t) = 5 | OB K = 4) Xops ~ )

0, == 3" P(state(t) = 5, | Obs)

Obs t

e Where did these terms come from?

11755/18797 94
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P(state(t) = s|Obs)

* The probability that the process was at s when

it generated X, given the entire observation
* Dropping the “Obs” subscript for brevity

P(state(t) =s| X,, X,,..., X;) oc P(state(t) =s, X,, X,,..., X;)

* We will compute P(state(t) =s,, X, Xy,..., X;)
first

— This is the probability that the process visited s at
time t while producing the entire observation
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P(state(t) =S, X;, X,,..., X;)

* The probability that the HMM was in a particular state s when
generating the observation sequence is the probability that it
followed a state sequence that passed through s at time t

O O O O /G O
O O O O
O O @‘// O
O O /O O O
O O O O
O O O O time

t
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P(state(t) =S, X;, X,,..., X;)

* This can be decomposed into two multiplicative sections

— The section of the lattice leading into state s at time t and the section
leading out of it

O
O
O

/

O O
O O

\

O O
O O O
O O O— time

11755/18797 97
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The Forward Paths

* The probability of the red section is the total probability of all
state sequences ending at state s at time t
— This is simply a(s,t)
— Can be computed using the forward algorithm

A
/

time
t
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The Backward Paths

* The blue portion represents the probability of all state
sequences that began at state s at time t

— Like the red portion it can be computed using a backward recursion

O O0—=0
o /

O O
O O
O O time

11755/18797 99
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The Backward Recursion
B(S,1) = P(X15 Xips0 X7 | StALE(T) = S)

O O

© O BNY

© O final
B(S,'[) ® Q B(S1t) backward recursion

© O

O——0O > time

A(s.1) = 2 B(S' t+DP(STS)P(x. | S')

* [(s,t) is the total probability of ALL state sequences that

depart from s at time t, and all observations after x,
— f(s,T) = 1 at the final time instant for all valid final states
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The complete probability
a(S,1) 5(S,1) = P(X 1) X010y Xr , StALE(L) = S)

O 0 O
o o oPNY
© 0. .0
aGtl) O @ O B
O 0 ©
a(s;t-1) O—O0——0 > time
t-1 t t+1
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Posterior probability of a state

* The probability that the process was in state s
at time t, given that we have observed the

data is obtained by simple normalization
p(state(t) = s |Obs) = L CEEM =5, % . %) _ _a(s.)AsD

* This term is often referred to as the gamma
term and denoted by vy, ,



Update rules at each iteration

Total no. of observation sequences

7(s;) =

> P(state(t) =s;, state(t +1) =s, | Obs)
G, 5= 2% 33 P(state(t) = s, | Obs)

Obs t
D Y (P(state(t) ='s; | ObS)X gps
— Obs t

> > P(state(t) =; | Obs)

Obs t

H,

@_ — Obs t

ZZ (state(t) = S@’(Xom,t — 1) (X opsy _,Ui)T

| > > P(state(t) =, | Obs)

Obs t

* These have been found

MLSP
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Update rules at each iteration

> P(state(t =1) =, | Obs)

7Z'(S-) — Obs
| c
Total no. of observation sequences

> > @(state(t) =s;, state(t + @
P(Sj |Si) — e

SS"P(state(t) = s, | Obs)

Obs t

D > P(state(t) ='s; | ObS) X g,

:Obs t

> > P(state(t) =; | Obs)

ZZ P(state(t) = s; | ObS)(X gy = £4)(Kops, — 1)
= > P(state(t) = s, | Obs)

Obs t

e Where did these terms come from?

H,




MLSEP
P(state(t) = s, state(t +1) =S', X, X5 ,..e, X )

_>S«/

L7

t t+1
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P(state(t) = s, state(t +1) =S', X, X5 ,..e, X )

a(s,t)

_>S«/

£7

t t+1
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P(state(t) = s, state(t +1) =S', X, X5 ,..e, X )

a(s,t) P(s'| s)P(X..|s)

_>S«/

£7

t t+1
11755/18797 107
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P(state(t) = s, state(t +1) =S', X, X5 ,..e, X )

a(s,t)P(s'|s)P(x..|s") B(s', 1 +1)

£7

t t+1
11755/18797 108
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The a posteriori probability of
transition

a(s,H)P(SS)P (X, |5) (S t +1)
S a5, )P(S, 18P Xy [5,)B(5,,t+1)

S S

P(state(t) = s, state(t +1) =s'|Obs) =

 The a posteriori probability of a transition
given an observation
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Update rules at each iteration

7(s) = _
(5) Total no. of observation sequences

> > @(state(t) =s;, state(t + @
P(SJ— |Si) — Obs t

SS"P(state(t) = s, | Obs)

Obs t
D Y (P(state(t) ='s; | ObS)X gps
— Obs t

> > P(state(t) =; | Obs)
>3 Elstate(t) = 5 | OB K = 4) Xops ~ )

0, == 3" P(state(t) = 5, | Obs)

Obs t

* These have been found

11755/18797 110
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Training without explicit segmentatiofi¥

* 6 O

Baum-Welch training

Every feature vector associated with every state of every HMM with a
probability

!

— State
Initial - YES
association Models onverged?
models probabilities J

A no

Probabilities computed using the forward-backward algorithm
Soft decisions taken at the level of HMM state

In practice, the segmentation based Viterbi training is much easier to
implement and is much faster

The difference in performance between the two is small, especially if we have
lots of training data

11755/18797
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HMM lIssues

How to find the best state sequence: Covered
How to learn HMM parameters: Covered

How to compute the probability of an
observation sequence: Covered
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Magic numbers

* How many states:
— No nice automatic technique to learn this

— You choose

* For speech, HMM topology is usually left to right (no
backward transitions)

* For other cyclic processes, topology must reflect nature
of process

* No. of states — 3 per phoneme in speech

* For other processes, depends on estimated no. of
distinct states in process
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Applications of HMMs

e Classification:

— Learn HMMIs for the various classes of time series
from training data

— Compute probability of test time series using the
HMMs for each class

— Use in a Bayesian classifier

— Speech recognition, vision, gene sequencing,
character recognition, text mining...

* Prediction
* Tracking
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Applications of HMMs

* Segmentation:

— Given HMM s for various events, find event
boundaries

* Simply find the best state sequence and the locations
where state identities change

* Automatic speech segmentation, text
segmentation by topic, geneome
segmentation, ...



