Machine Learning for Signal
Processing
Independent Component Analysis

Class 9. 30 Sep 2014

Instructor: Bhiksha Raj
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Correlation vs. Causation

* The consumption of burgers has gone up
steadily in the past decade

Antarctica has gone down

Correlation, not Causation
(unless McDonalds has a
6 66 - top-secret Antarctica division)
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The concept of correlation

* Two variables are correlated if knowing the
value of one gives you information about the
expected value of the other

Le
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Penguin population

- > :
Time Burger consumption
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The statistical concept of
correlatedness

 Two variables X and Y are correlated if If
knowing X gives you an expected value of Y

« XandY are uncorrelated if knowing X tells you
nothing about the expected value of Y

— Although it could give you other information
— How?
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A brief review of basic probability

e Uncorrelated: Two random variables X and Y are
uncorrelated iff:

— The average value of the product of the variables equals the
product of their individual averages

e Setup: Each draw produces one instance of X and one
instance of Y

— |l.e one instance of (X,Y)
e E[XY] = E[X]E[Y]

* The average value of Y is the same regardless of the value
of X
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Correlated Variables

Penguin population

b, |0
Burger consumption

e Expected value of Y given X:

— Find average of Y values of all samples at (or close)
to the given X

— If this is a function of X, X and Y are correlated

>
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Uncorrelatedness
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Burger consumption

* Knowing X does not tell you what the average
value of Y is

— And vice versa
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Uncorrelated Variables

A X as a function of Y
o Y as a function of X
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Burger consumption

 The average value of Y is the same regardless
of the value of X and vice versa
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Uncorrelatedness

 Which of the above represent uncorrelated RVs?
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The notion of decorrelation
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e So how does one transform the correlated
variables (X,Y) to the uncorrelated (X', Y’)
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What does “decorrelated” mean

Assuming

o, omer e E[X’] = constant (0)
°  E[Y’] = constant (0)
“| cepe - E[X'|Y]=0
« E[X'Y']=E,[E[X'|Y']]=0
>
<
EKXIJ(X' Y')}= E[ S XIZIJ=(E[XI2] 0 , J=diagonal matrix
Y X'Y' Y 0 E[Y 2]

* If Y is a matrix of vectors, YYT = diagonal
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Decorrelation

e Let X be the matrix of correlated data vectors

— Each component of X informs us of the mean trend of
other components

e Need a transform M such thatif Y = MX

* The covariance of Y is diagonal
— YYTis the covariance if Y is zero mean
— YYT = diagonal
—MXX'TMT"=D
—=M.Cov(X).M"=D
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Decorrelation

e Easy solution:
— Eigen decomposition of Cov(X): Cov(X) = EAET
—EET=1

* letM=ET"

« MCov(X)M'" =ETEAETE = A = diagonal

e PCA: Y = MX
* Diagonalizes the covariance matrix
— “Decorrelates” the data
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e PCA: Y = MX

* Diagonalizes the covariance matrix

— “Decorrelates” the data
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The statistical concept of
Independence

 Two variables X and Y are dependent if If
knowing X gives you any information about Y

« XandY are independent if knowing X tells you
nothing at all of Y
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A brief review of basic probability

* Independence: Two random variables X and Y are
independent iff:

— Their joint probability equals the product of their
individual probabilities

* P(X,Y) = P(X)P(Y)
* |Independence implies uncorrelatedness

— The average value of X is the same regardless of the
value of Y

« E[X|Y]=E[X]
— But not the other way
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A brief review of basic probability

* Independence: Two random variables X and Y
are independent iff:

 The average value of any function of X is the
same regardless of the value of Y

— Or any function of Y

 E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()
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Independence

 Which of the above represent independent RVs?

* Which represent uncorrelated RVs?
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A brief review of basic probability

y =1(x)

J— N

* The expected value of an odd function of an
RV is O if
— The RV is 0 mean
— The PDF is of the RV is symmetric around O

 E[f(X)] = Oif f(X) is odd symmetric
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A brief review of basic info. theory

ee®  T(all), M(ed), S(hort)...
H(X)=> P(X)[-log P(X)]

 Entropy: The minimum average number of bits
to transmit to convey a symbol

MF F M.
H(X,Y)=Y P(X,Y)[-log P(X,Y)]

* Joint entropy: The minimum averagé number of
bits to convey sets (pairs here) of symbols
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A brief review of basic info. theory

e Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol
X, after symbol Y has already been conveyed

— Averaged over all values of X and Y
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A brief review of basic info. theory
H(X[Y) =Z,P(Y); P(X |Y)[-log P(X IY)]=;P(Y)§,P(X)[—|09 P(X)]=H(X)

e Conditional entropy of X = H(X) if X is
independent of Y
H(X,Y)=XZY:P(X,Y)[—Iog P(X,Y)]:XZY:P(X,Y)[—Iog P(X)P(Y)]
=—XZY:I;>(X,Y)Iog P(X)—XZY:P(X,Y')Iog P(Y)=H(X)+H(Y)
* Joint entfopy of X and Y is the sum of the
entropies of X and Y if they are independent
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30 Sep 2014

Onward..
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We're actually computing a score
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So what are we doing here?

H="?

J.ll.

1l Illll,...
I I.HI..Inll.l.n_

* M ~WH is an approximation
e Given W, estimate H to minimize error

=argmin || M —WH ||Z=argmin ZZ(MU. —(WH), )2
ij

* Must ideally find transcription of given notes
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= M~WH W = Mpinv(H)  U=WH
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Going the other way..

—1_ M

H [—m BT T 1
1 n i p— i

w

* M ~WH is an approximation
 Given H, estimate W to minimize error

W =argmin, || M —WH ||2=arg min ZZ( ..—(V_VH)U.)2

 Must ideally find the notes correspondmg to the
o.Lranscription 1175518757 .



When both parameters are unknown

H="?

W=7 approx(M) = ?

e Must estimate both H and W to best
approximate M

* |deally, must learn both the notes and their
transcription!
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A least squares solution

W,H=argmin - | M—WH |2

WH|

e Unconstrained

— For any W, H that minimizes the error, W’=WA,
H’=A"1H also minimizes the error for any
invertible A

— Too many solutions

* Constraint: W is orthogonal
- WTW = |
— PCAII
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PCA: Constrained solution

W,H=argmin - | M—WH |2

WH|

e Constraint: W is orthogonal
—WTW = |

* This results in PCA!!
— W are the Eigenvectors of MMT
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..
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-4 2 2
8 8 8

So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..

* Results are not good
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A constrained least squares solution

W, H =argming 5 | M—WH ||Z

I LI 1

H [—m L T |—|
I L N o i

N e N s RN | §

* For our problem, lets consider the “truth”..

* When one note occurs, the other does not
—h;"h; =0 foralli!'=j
* The rows of H are uncorrelated
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PCA: The Other Way?

W,H=argmin - | M—WH |2

WH|

e Constraint: H is orthogonal
—HHT =

* This results in PCA or the row vectors of M!!
— H are the Eigenvectors of MTM
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So how does that work?

* The scores of the first three “notes” and their contributions
* Not that great again



PCA

approx(M) = ?

If the notes matrix W is made orthogonal, the rows of H end up being
orthogonal to one another

— His the orthogonalized version of M

If the scores matrix H is made orthogonal instead, the rows of W end up
being orthogonal

The two decompositions are identical to within a scaling of the vectors



Eigendecomposition and SVD

M=USV' M = \WH

Matrix M can be decomposed as M = USVT

* When we assume the scores are orthogonal, we get
H=VT, W=US

* When we assume the notes are orthogonal, we get

W=U, H=SVT

In either case the results are the same

— The notes are orthogonal and so are the scores

— Not good in our problem
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Orthogonality

M = WH

* |n any least-squared error decomposition
M=WH, if the columns of W are orthogonal,
the rows of H will also be orthogonal

* Sometimes mere orthogonality is not enough
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What else can we look for?

[ —
] [ [ []
1 g

* Assume: The “transcription” of one note does
not depend on what else is playing

— Or, in a multi-instrument piece, instruments are
playing independently of one another

* Not strictly true, but still..
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Formulating it with Independence

W,H=argmin_. . | M—WH ||2 +A(rows.of .H.areindependent)
W,H F

* Impose statistical independence constraints
on decomposition
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Changing problems for a bit

h, (t)
-/

.
.
.
.
.
.

ﬁ .. > > ....... > Q:] m, (t) = wy,hy (1) +w,h, (1)
N )

AN

h, (1)

 Two people speak simultaneously
* Recorded by two microphones
* Each recorded signal is a mixture of both signals
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A Separation Problem

M W H
ANASANY AN Wy Wi | | AP AVAN
A NWIMAINT | gy, wy, \/W\J\/\/\N\N\\
\
Signal from speaker 1
+ M=WH |
Signal at mic 1 Signal from speaker 2
— M = “mixed” signal
Signal at mic 2

— W = “notes”

— H = “transcription”

e Separation challenge: Given only M estimate H
* |dentical to the problem of “finding notes”
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A Separation Problem

Wy Wy /VV\/\/\/\/\/\A
W21 W22 \/\/\M\!V\/\/\M/\/

e Separation challenge: Given only M estimate H

* Identical to the problem of “finding notes”
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Imposing Statistical Constraints

M W H
/W\/\f\/\/\/\ﬂ Wy Wy /\A/\/\/\/\/\A’\M
AN =y s, || VN

. M=WH

* Given only M estimate H

« H=W1M = AM

* Only known constraint: The rows of H are
independent

e Estimate A such that the components of AM are
statistically independent

— Ais the unmixing matrix
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Statistical Independence

c M =WH
T Remember this form

* Emulating independence

— Compute W (or A) and H such that H has
statistical characteristics that are observed in
statistically independent variables

* Enforcing independence

— Compute W and H such that the components of
M are independent

30 Sep 2014 11755/18797
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Emulating Independence

H

AN AN NN
NIAVA N N AVAVAYA AN

 The rows of H are uncorrelated
- E[hihj] = E[hi]E[hj]
— h; and h; are the i*" and j*" components of any vector in H

 The fourth order moments are independent
— E[h;h;hyh] = E[h]E[N]E[N]E[N]
— E[h 2h ihd = E[hZ]E[h]E[h,]
— E_ h?] = E[hZ]E[h, 2]
— Etc.
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Zero Mean

e Usual to assume zero mean Processes
— Otherwise, some of the math doesn’t work well

c M=WH H=AM

* Ifmean(M)=0 => mean(H)=0
— E[H]=AE[M]=A0=0
— First step of ICA: Set the meanof Mto 0

1
Hm = cols (M) 2.m,

m; =M, — 44, Vi

— m, are the columns of M

30 Sep 2014 11755/18797
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Emulating Independence..

H Diagonal

H=AM
_ + rankl
H — matrix A=BC
H=BCM

* Independence = Uncorrelatedness
e Estimate a C such that CM is uncorrelated
e X=CM

— E[XiX;] = 8;; [since M is now “centered”]

— XXT =

* In reality, we only want this to be a diagonal matrix, but
we’ll make it identity
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Decorrelating

H Diagonal H=AM
_ + rankl B
H — matrix A=BC
H=BCM
« X=CM
« XXT=1

* Eigen decomposition MMT= ESET
e Let C =S12ET
— X = S12ETM
— XXT=CMMTCT = S 12ETESETES 12 = |

30 Sep 2014 11755/18797 51



Decorrelating

H Diagonal

+ rankl
" matrix

* Eigen decomposition MMT= ESET
¢ LetC=S12ET
« X=CM

« XXT=]

 Xis called the whitened version of M
— The process of decorrelating M is called whitening
— C is the whitening matrix

30 Sep 2014 11755/18797
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H=BCM
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Uncorrelated != Independent

* Whitening merely ensures that the resulting signals are
uncorrelated, i.e.

E[xx]=01fi!=)

* This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[xi*x;"] = EDX’]E [X7]

* This is one of the signatures of independent RVs
* Lets explicitly decouple the fourth order moments
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Decorrelating

H Diagonal

+ rankl
H’ matrix

« X=CM
« XXT=]

*  Will multiplying X by B re-correlate the components?
 Not if Bis unitary
— BB"=B™B=1
« HHT=BXX'™BT=BBT" = |
* So we want to find a unitary matrix

— Since the rows of H are uncorrelated
* Because they are independent

30 Sep 2014 11755/18797
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A=BC
H=BCM

H=BX
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ICA: Freeing Fourth Moments

We have E[x; x;] =0 ifi!=]
— Already been decorrelated

A=BC, H=BCM, X=CM, > H=BX

The fourth moments of H have the form:
E[h; h; hy h]

If the rows of H were independent
E[h; hj h.h] =E[h] E[hj] E[hJ E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled

— While ensuring that B is Unitary
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ICA: Freeing Fourth Moments

* Create a matrix of fourth moment terms that would be
diagonal were the rows of H independent and diagonalize it

A good candidate

— Good because it incorporates the energy in all rows of H

d11 d12 d13
D = d21 d22 d23

— Where
d;=E[Z, hZh; h]
— l.e.
D=E[hTh h hT]
* hare the columns of H
* Assuming his real, else replace transposition with Hermition
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ICA: The D matrix

d, d, d; . 1 2
d: =E[Z, h2h h]= hoh .h
D=|d,, d,, dy . = ELEA Y C0|S(H)Zm:; memem

Sum of squares

of all component
2
>h,

e Average above term across all columns of H

jt component

N
hi by
heh; h
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ICA: The D matrix

d11 d12 d13 a d.=E =
ij = [Zh |]
D=|d, d, d, .| ~ " cols(H)

2.2 PP

* If the h; terms were independent
— Foril=j

e/ shinn, |-l 1 ebilen e Sebiin b

k=i,k=#j
— Centered: E[h]=0 = E[Z, h2h; h]=0fori!=]
— Fori=j

E{Zk:hﬁhihj} —E|h! ]+ E[n2|> Elnz =0

ki

* Thus, if the h; terms were independent, d; = 0 if i != ]

* i.e, ifh; wereindependent, D would be a diagonal matrix

— Let us diagonalize D
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Diagonalizing D

 Compose a fourth order matrix from X
— Recall: X=CM, H=BX=BCM

B is what we’re trying to learn to make H independent

* Note: if H=BX, theneach h =Bx
e The fourth moment matrix of H is
« D= E[h"hhh']= E[x"BB"X BT x x"B]

30 Sep 2014

= E[x'™X BT x x"B]
= BT E[x"™x xx"]B

11755/18797
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Diagonalizing D

* Objective: Estimate B such that the fourth
moment of H = BX is diagonal

* Compose D, = E[xT x x xT]

* Diagonalize D, via Eigen decomposition
D, = UAUT

e B=UT
— That’s it!!!!
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B frees the fourth moment

D, =UAUT ; B=UT'
e U is a unitary matrix, i.e. UTU = UUT = | (identity)
« H=BX=UTX

« h=UTx

* The fourth moment matrix of H is
E[hThhh'] = UTE[x™x xx"]U
=U'D, U
=UTUAUTU=A
* The fourth moment matrix of H=UTX is Diagonal!!

30 Sep 2014 11755/18797
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Overall Solution

H=AM=BCM

— Cis the (transpose of the) matrix of Eigen vectors of MMT
X=CM
A= BC=U'C

— B is the (transpose of the) matrix of Eigenvectors of
X.diag(XT"X).XT

30 Sep 2014 11755/18797
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Independent Component Analysis

e Goal: to derive a matrix A such that the rows of AM are
independent

* Procedure:

1.
2.
3.

0 N U os

“Center” M

Compute the autocorrelation matrix Ry,, of M

Compute whitening matrix C via Eigen decomposition
Rywv = ESET, C=S2ET

Compute X = CM

Compute the fourth moment matrix D’ = E[X"xxX]

Diagonalize D’ via Eigen decomposition

D’ = UAUT

Compute A=UTC

 The fourth moment matrix of H=AM is diagonal

30 Sep 2014

Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment
matrices

* The procedure just outlined, while fully functional, has
shortcomings
— Only a subset of fourth order moments are considered

— There are many other ways of constructing fourth-order moment
matrices that would ideally be diagonal

e Diagonalizing the particular fourth-order moment matrix we have chosen
is not guaranteed to diagonalize every other fourth-order moment matrix

* JADE: (Joint Approximate Diagonalization of Eigenmatrices),
J.F. Cardoso
— Jointly diagonalizes several fourth-order moment matrices

— More effective than the procedure shown, but computationally more
expensive
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Enforcing Independence

» Specifically ensure that the components of H are
independent

— H=AM

e Contrast function: A non-linear function that has a
minimum value when the output components are
independent

e Define and minimize a contrast function
» F(AM)

* Contrast functions are often only approximations too..
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A note on pre-whitening

 The mixed signal is usually “prewhitened”
— Normalize variance along all directions
— Eliminate second-order dependence

* Eigen decomposition MMT = ESET
e C=GIRET

e Can use first K columns of E only if only K independent
sources are expected

— In microphone array setup — only K < M sources

X=CM
— E[XiX;] = §;; for centered signal
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The contrast function

e Contrast function: A non-linear function that
has a minimum value when the output
components are independent

* An explicit contrast function

I(H) =Y H(R,)-H(R)

e With constraint: H=BX
— Xis “whitened” M

30 Sep 2014 11755/18797
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Linear Functions

s h=Bx, x=Blh
— Individual columns of the H and X matrices
— X is mixed signal, B is the unmixing matrix

R.(h) =R, (B"h)|B"

H (x) = —[ P(x) log P(x)dx

log P(x) =log P, (B™*h) —log(| B |)
H(h)=H(X)+log|B|

30 Sep 2014 11755/18797
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The contrast function

|(H)= Y H (R,)—H (H)

I(H)= Y H(R,)-H(x)-log| B|

* Ignoring H(X) (Const)
J(H)= H(h,)-log|B|
* Minimize the above to obtain B

30 Sep 2014 11755/18797
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An alternate approach

* Definition of Independence —if Xand y are
independent:

— E[f()a(y)] = E[f(X)]E[g(Y)]
— Must hold for every f() and g()!!

30 Sep 2014 11755/18797
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An alternate approach

* Define g(H) = g(BX) (component-wise
function)

gthy)  d(hy)
a(hyp)  g(hyy)

. Define f(HI) = f(BX)

f(hy)  T(hy)
f(h)  T(hyp)

30 Sep 2014 11755/18797
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An alternate approach
» P=g(H) f(H)" = g(BX) f(BX)"

Py Py

e P Py=E[g(h)f(h)]

P =

This is a square matrix

* Must ideally be
| Qy =E[g(h)IELf(h)] i= ]

Qii = E[g(hi) f (hi )]

Q:

. Error = ||P-Q|



* |deal value for Q

An alternate approach

Q:

Qu
Q12

Qu -

Q2

Q; =Elg(m)IELT(hy)] 1=}

Qi = E[g(hi) f (hi )]

* |f g() and h() are odd symmetric functions
E[g(h;)] = O for all i
— Since = E[h;] =0 (H is centered)
— Q is a Diagonal Matrix!!!

30 Sep 2014
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An alternate approach
* Minimize Error

P =g(BX)f(BX)’
Q = Diagonal

error 5| P-Q||2

* Leads to trivial Widrow Hopf type iterative
le: .
e E = Diag —g(BX)f(BX)"
B=B+ 77EBT
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Update Rules

 Multiple solutions under different
assumptions for g() and f()

« H=BX
*B=B+nAB
e Jutten Herraut : Online update

— ABy; =1(hy)g(h;); -- actually assumed a recursive
neural network

* Bell Sejnowski
—AB = ([B']"* - g(H)X")
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Update Rules

* Multiple solutions under different
assumptions for g() and f()

. H=BX
- B=B+nAB

* Natural gradient -- f() = identity function
- AB=(1 -g(HH")W

* Cichoki-Unbehaeven
—AB = (I - g(H)f(H)"W
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What are G() and H()

Must be odd symmetric functions
Multiple functions proposed

X +tanh(x) X issuperGaussian
X —tanh(x) XIssub Gaussian

g(x>={

Audio signals in general

— AB = (I — HHT-Ktanh(H)HT)W
Or simply

— AB = (I -Ktanh(H)H")W

30 Sep 2014 11755/18797
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So how does it work?

ZZ' ' ¢
 Example with instantaneous mixture of two
speakers

* Natural gradient update
 Works very well!

30 Sep 2014 11755/18797 79



Another example!

Input Mix Output
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Another Example

e Three instruments..

30 Sep 2014 11755/18797
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ICA Feature 1

| . . .

= T———— T =

L
50 100 150 200 250 300
ICA Feature 2

——

L L L
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ICA Feature 3

The Notes
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& R RERTI T

60 80 100 12

140 160 180

e Three instruments..

30 Sep 2014

11755/18797

82



ICA for data exploration

e The “bases” in PCA

represent the “building
blocks”

— |deally notes
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* Very successfully used

 So can ICA be used to
do the same?
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ICA vs PCA bases

= Motivation for using ICA vs PCA

= PCA will indicate orthogonal directions

of maximal variance

= May not align with the data!

= |CA finds directions that are
iIndependent

= More likely to “align” with the data
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Finding useful transforms with ICA

Audio preprocessing 3 T T )
examp|e /\J mem'.\\r Amwu'l"f Wﬂ“y"\'\ ~ MM~ i wmwml i — fWW'U
Take a ot of audiosnippets | |
and concatenate them in a P T r\UT"r“ﬂ ,,,,,
big matrix, do component \f‘,[lfjl?l l wf\]'[w w'lf - w,l"“» l ﬂ\'; A [\ A wﬂ{"'r”
analysis e T o L**r*%‘ *****
J\m‘w‘. : w,“l e | mffpon : 4 /\ | o : o \ : «/\/"k“"“ﬂ"ﬁv } -
PCA results in the DCT bases J'A"M\.“ﬂr”PL/ﬂLhiﬂvau%‘[
|ICA returns time/freq ~\fﬂj'_bw~ w‘“’l;w w\\» ----- ‘,v",l.j.hﬂ.j”f«w w-,f}{v\w : i w-w]UJM i f' I;ﬂ‘\[\-\ / wl' -
localized sinusoids which is a | T i Ty »\ l
better way to analyze sounds 1 w‘f\vﬂ 1 i 4 i"”"{{‘“’“ i/ \ ““\f”'
Ditto for images ! \f Vljl\.H wa «’Ua'ru“““ ﬂf‘h ] f'- » ;l'!ﬁ.w
— ICA returns localizes edge ————————————rl————rT———--N-'q___T: _____ :W_"T _____
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Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces
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ICA for Signal Enhncement
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* Very commonly used to enhance EEG signals

EEG signals are frequently corrupted by
heartbeats and biorhythm signals

ICA can be used to separate them out
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So how does that work?

 There are 12 notes in the segment, hence we
try to estimate 12 notes..
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PCA solution

 There are 12 notes in the segment, hence we
try to estimate 12 notes..



So how does this work: ICA solution

-201 C

 Better..

— But not much

e But the issues here?

30 Sep 2014 11755/18797



ICA Issues

No sense of order

— Unlike PCA

Get K independent directions, but does not have a notion
of the “best” direction

— So the sources can come in any order

— Permutation invariance

Does not have sense of scaling

— Scaling the signal does not affect independence

Outputs are scaled versions of desired signals in permuted
order

— In the best case
— In worse case, output are not desired signals at all..



What else went wrong?

* Notes are not independent
— Only one note plays at a time

— If one note plays, other notes are not playing

 Will deal with these later in the course..
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