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ABSTRACT

Noise degrades speech signals, affecting their perceptual quality, in-
telligibility, as well as their downstream processing, e.g. coding or
recognition. One obvious solution to this is to denoise the signals,
but denoising algorithms filter out an estimate of noise, which is
often inexact. As a result, denoising can attenuate spectral compo-
nents of speech, which may enhance perceptual quality but further
reduce it’s intelligibility. We address the latter issue and propose a
method to restore lost spectral components in denoised speech. Our
algorithm modifies the standard NMF formulation to represent clean
speech as a composition of bases, and denoised speech as a compo-
sition of distortions of these bases. By decomposing the denoised
signal into a composition of the distorted bases, the corresponding
clean signal can be estimated as an identical composition of the clean
bases.
Index Terms: Denoising, Restoration, Intelligibility, Non-negative
matrix factorization, Spectral decomposition

1. INTRODUCTION

Speech intended for transmission or recognition is typically recorded
in realistic, noisy environments. In addition to reducing both the
perceptual quality and intelligibility of the signal, noise negatively
affects the performance of the downstream processing mechanisms
(such as codecs), which are optimized for efficient performance on
clean speech. For this reason, it is often necessary to denoise speech
before further processing.

A large number of denoising algorithms have been proposed in
the literature. These typically estimate the noise first and then elim-
inate it, either by direct subtraction [1, 2], or filtering [3, 4]. The
problem is that noise estimates are usually inexact, especially when
the noise is time-varying. As a result, when the estimated noise
is removed from the signal, not only is residual noise left behind,
but information-carrying spectral components are also attenuated.
An example is shown in Figure 1, where a state-of-art denoising
algorithm (from a commercial vendor) has been used to denoise a
speech signal corrupted by automobile noise. We see that the high-
frequency components of fricated sounds such as /S/ and very-low
frequency components of nasals and liquids, such as /M/, /N/ and
/L/ have been damaged. This happens because automotive noise is
dominated by high and low frequencies, and cancelling the noise
attenuates these frequency components in the signal.

Thus, although noise reduction results in a signal with improved
perceptual quality, the intelligibility of the signal often does not im-
prove, i.e., while the denoised signal sounds cleaner, the ability of
listeners to make out what was spoken is not enhanced. In fact, par-
ticularly when the denoising is aggressive or when the noise estimate
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Fig. 1. Top: Spectrogram of a clean signal. Middle: The same signal
corrupted by additive automotive noise to 6dB. Bottom: Denoised
version of signal in the middle panel. Speech spectral components
that were masked by the noise have been attenuated or deleted.

is affected by nonstationarity, the denoised signal is less intelligible
than the original noisy signal.

Although this is an artificially created problem resulting from
imperfect processing, it is nevertheless a real one faced by producers
of after-market spoken-interface devices that incorporate third-party
denoising hardware or software. The algorithms are often black-
boxes that are integrated into the sound capture mechanism itself,
and we only have the output of the the denoiser. It then becomes im-
portant to somehow restore the speech information that the denoising
algorithm has excised.

In this paper we propose an algorithm for restoring lost spectral
components of denoised signals with the intention of enhancing its
intelligibility. Our solution is constrained by the practical aspects of
the problem: we assume that a) the denoising algorithm is a black-
box and the manner in which it estimates noise, and the actual can-
cellation algorithm are unknown and b) it is impractical to record
the noise itself separately, and no external estimate of the noise is
available to guess how the denoising has affected any segment of the
speech. Additionally, any processing we do must restore lost spectral
components of the speech signal without reintroducing noise into the
signal.

Our solution utilizes a compositional characterization of the sig-
nal that assumes that the signal can be represented as a constructive
composition of additive units. We obtain this characterization via
non-negative matrix factorization [5], although other techniques e.g.



[6] may also be employed. We assume that the manner in which each
of the additive constituents of the signal is affected by the denoising
is relatively constant, and can be learned from training data compris-
ing stereo pairs of undistorted and distorted (by denoising) signals.
By determining how the denoised signal is represented in terms of
these additive constituents, the attenuated spectral structures can be
estimated from the undistorted versions of these constituents.

Note that the proposed solution has several analogues in the liter-
ature. NMF has frequently been used for separation of mixed signals
[7], or even denoising speech [8]. Closer to our solution, in [9, 10]
compositional models have been used to extend the bandwidth of
bandlimited signals. However, no current literature exists that ad-
dresses the specific problem mentioned in this paper, to the best of
our knowledge.

This paper is organized as follows. Sections 2 3 and 4 present
our basic model, feature representation used, and the proposed
restoration algorithm respectively. Sections 5 and 6 present our ex-
perimental results and conclusions.

2. MODEL OF THE PROBLEM
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Fig. 2. Model for lossy denoising algorithm. Noisy speech S is
processed by an ideal “lossless” denoising algorithm F () to produce
a “lossless” denoised signal X , which passes through a distortion
function D() to produce the“lossy” signal Y .

We model the lossy denoising algorithm that inappropriately at-
tenuates spectral components of speech as a combination of a loss-
less denoising mechanism that attenuates the noise in the signal with-
out attenuating any speech spectral components, and a distortion that
modifies the losslessly denoised signal to produce the lossy signal.
This model in illustrated by Figure 2. Noisy speech S is processed
by an ideal “lossless” denoising algorithm F (S) to produce a (hypo-
thetical) lossless denoised signal X . X is passed through a distortion
function D() that attenuates speech spectral components to produce
the lossy signal Y . Our goal is to estimate X , given only Y .

We assume that the lossless signal X can be expressed as a com-
position of unit elements, which we will call “bases”, i.e. X can be
expressed as:

X =
K∑
i=1

wiBi (1)

where Bi are the bases and wi are the weights with which they com-
bine to compose X . The bases Bi are assumed to represent uncorre-
lated building blocks that constitute the individual spectral structures
that compose X .

The distortion function D() distorts the bases to modify the
spectral structure they represent. Thus any basis Bi is transformed
by the distortion to Bdistorted

i = D(Bi). We assume that the
distortion transforms any basis independently of other bases, i.e.
D(Bi|Bj : j ̸= i) = D(Bi), where D(Bi|Bj : j ̸= i) repre-
sents the distortion of Bi given that other bases Bj , j ̸= i are also
concurrently present. Note that this assumption is not truly valid

unless the bases represent non-overlapping, complete spectral struc-
tures. We nevertheless make this assumption to simplify the algo-
rithm. We also assume that the manner in which the bases combine
to compose the signal is not modified by the distortion. Again, this
is a simplifying assumption that is not necessarily valid.

The implication of the above assumptions is that

Y = D(X)⇒

X =
∑
i

wiBi ⇔ Y =
∑
i

wiB
distorted
i (2)

Equation 2 implies that if all bases Bi and their distorted versions
Bdistorted

i are known, and if the manner in which the distorted bases
compose Y could be determined (i.e. if the weights wi could be
estimated) then X could be estimated.

3. REPRESENTING THE SIGNAL

The model of Sec. 2 is primarily a spectral model. It character-
izes signals as a composition of uncorrelated signals, which naturally
leads to spectral characterization of all signals, since the power spec-
tra of uncorrelated signals add. We therefore represent all signals
as magnitude spectrograms1 that are obtained by computing short-
time Fourier transforms (STFT) of the signals. We found the opti-
mal analysis window for the STFT to be 40-64ms, and used 64ms
windows in our experiments.

S, X , and Y thus represent magnitude spectrograms of the
noisy speech, losslessly denoised speech and lossy denoised speech
respectively. The bases Bi, as well as their distorted versions
Bdistorted

i represent magnitude spectral vectors. The magnitude
spectrum of the tth analysis frame of X , which we represent as X(t)
is assumed to be composed from the lossless bases Bi as X(t) =∑

i wi(t)Bi and the magnitude spectrum of the corresponding frame
of the lossy signal Y is given by Y (t) =

∑
i wi(t)B

distorted
i .

Also, the weights wi are now all non-negative, since the signs of
the weights in the model of Equation 1 simply get incorporated into
the phase of the spectra for the bases, and do not appear in the rela-
tionship between magnitude spectra of the signals and the bases.

Our restoration algorithm estimates the lossless magnitude spec-
trogram X from that of the lossy signal, Y . The estimated spectro-
gram is inverted to a time-domain signal using the phase borrowed
from the complex spectrogram of the lossy signal.

4. THE RESTORATION ALGORITHM

For restoration, in an initial training phase, the lossless bases Bi for
X and the corresponding lossy bases Bdistorted

i for Y are learned
from training data. These bases are then employed to estimate X .
We give the details of the procedure below.

4.1. Learning the Bases

Since D() is unknown, we jointly learn Bi and Bdistorted
i from anal-

ysis of joint recordings of X and the corresponding Y . For this, we
need joint recordings of X and Y in the training phase. Since X is
not directly available, we use the following approximation instead:
we artificially corrupt clean speech signals C with digitally added
noise to obtain noisy signal S. We then process S with the denoising
algorithm to obtain the corresponding Y . The “losslessly denoised”

1Although in theory it is the power spectra that add, we have empirically
found additivity to hold better for magnitude spectra.



signal X is a hypothetical entity that cannot be known. Instead we
use the original clean signal C as a proxy for X .

The denoising algorithm (and the distortion) will usually intro-
duce a delay into the signal – the signals for Y and C may be shifted
with respect to one another. Since the model of Equation 2 assumes
a one-to-one correspondence between each segment of X and the
correponding segment of Y , we must first align the recorded sam-
ples of C and Y to eliminate any relative shifts introduced by the
denoising. We estimate this shift by cross-correlating each C and
the corresponding Y .

The bases Bi are assumed to be the composing units for X . It
has been shown that such bases can be obtained by analysis of mag-
nitude spectra of signals using non-negative factorization methods,
e.g. [6]. However, we have an additional constraint – the distorted
bases Bdistorted

i must be reliably known to actually be distortions of
their clean counterparts Bi.

We therefore use an example based model [11] where such cor-
respondence is assured. We randomly select a large number of mag-
nitude spectral vectors from C as the bases Bi for X . We se-
lect the corresponding vectors from the training instances of Y as
Bdistorted

i . The procedure ensures that Bdistorted
i is indeed a near-

exact distorted version of Bi. Since bases represent spectral struc-
tures in speech, and the potential number of spectral structures in
speech is virtually unlimited, we select a large number of bases. The
model of Equation 1 thus becomes overcomplete, combining many
more elements than the dimensionality of the signal itself.

4.2. Estimating weights

As a first step to restoring a test signal Y , we determine how each
spectral vector Y (t) of Y is composed by the distorted bases. We
have Y (t) =

∑
i wi(t)B

distorted
i . If we represent the set of all

bases as a matrix: B̄ = [{Bdistorted
i }], and the set of weights

{wi(t)} as a vector: W (t) = [w1(t)w2(t) . . .]
⊤, we can write:

Y (t) = B̄W (t) (3)

W (t) is constrained to be non-negative during estimation. While
a variety of update rules have been proposed to learn the weights
[5], for speech and audio signals we have found it most effective to
use the update rule that minimizes the generalized Kullback-Leibler
distance between Y (t) and B̄W (t) [5]:

W (t)←W (t)⊗
B̄⊤ Y (t)

B̄W (t)

B̄⊤1
(4)

Here ⊗ represents component-wise multiplication. All divisions are
also component-wise. Since the representation is overcomplete (i.e.
there are more bases than there are dimensions in Y (t)), the equa-
tion is underdetermined and multiple solutions for W (t) exist that
explain Y (t) equally well. Generally in this situation the constraint
that {wi(t)} must be sparse, i.e. have minimal non-zero (or signif-
icant) entries, is enforced, usually by minimizing the L1 norm of
W (t). In our problem, enforcing sparsity did not improve results, so
we do not enforce it.

4.3. Estimating restored speech

Once the weights W (t) = [w1(t)w2(t) . . .]
⊤ are determined for any

Y (t), by Equation 2 the corresponding lossless spectrum X(t) can
simply be estimated as X(t) =

∑
i wi(t)Bi. Note that since the

estimation procedure is iterative, the exact equality of Equation 3 is
never achieved. Instead B̄W (t) is only an approximation to Y (t).

To account for the entire energy in Y , we therefore use the following
Wiener filter formulation to estimate the spectral vectors of X:

X(t) = (Y (t) + ϵ)⊗
∑

i wi(t)Bi∑
i wi(t)Bdistorted

i + ϵ
(5)

All divisions and multiplications are component-wise. ϵ > 0 ensures
that attenuated spectral components at Y (t) = 0 can still be restored.

4.4. Expanding the Bandwidth

If the recorded and denoised signal is bandwidth reduced (e.g. if
it is telephone speech), we can extend the procedure above to (re-
)introduce high-frequency spectral components into the signal. This
is also expected to improve the intelligibility of the signal. To
expand the bandwidth we use a procedure similar to that in [9]:
the training data now include wideband signals for C. The train-
ing recordings for C and Y are aligned, and STFT analysis for
them is performed using identically long (in time) analysis win-
dows. This ensures that in any joint recording there is a one-to-one
correspondence between the spectral vectors for C and Y . Conse-
quently, while the bases Bdistorted

i (drawn from training instances
of Y ) represent reduced-bandwidth signals, the corresponding Bi

represent wideband signals and include high-frequency components.
When signals are restored, low-frequency components are restored
using Equation 5. The high-frequency components are obtained as
X(t, f) =

∑
i wi(t)Bi(f), f ∈ {high frequency}, where f is an

index to specific frequency components of X(t) and Bi.
This estimate only computes spectral magnitudes. In order to

invert the magnitude spectrum to a time-domain signal, phase is also
required. The phase for low-frequency components is borrowed di-
rectly from the reduced-bandwidth lossy denoised signal. For higher
frequencies we have found it sufficient to simply replicate the phase
terms from the lower frequencies.

5. EXPERIMENTAL RESULTS

Our experiments used a commercial denoising algorithm, which we
treated as a blackbox. The denoising system was part of a data cap-
ture system and it’s output was bandlimited to 4kHz. The system
was quite effective at improving the signal-to-noise ratio (SNR) of
the recording, but, as with all denoising systems, resulted in a loss of
intelligibility of the signal. The problem was particularly observable
when the speech signal was corrupted by automotive noise, which
has relatively high energy at low frequencies; high frequency com-
ponents of fricatives such as /S/, /F/ and /HH/ and low frequency
components of sounds such as /N/, /M/ and /B/ were attenuated in
the denoised signal.

We obtained our training data by digitally adding various types
of automotive noises at various SNRs to clean speech recordings.
The noise-added signals were then denoised, and then aligned by
correlation to the clean signal to eliminate relative delays. Train-
ing data consisted of several pairs of clean and denoised-and-aligned
counterpart signals from multiple speakers. A set of 6000 bases were
randomly drawn from the training set and used for signal restoration
of test data. We obtained two different sets of bases. In the first,
where the goal was simple signal enhancement, the training data
were bandlimited. In the second, where we also expanded the band-
width of the signal, the training data were fullbandwidth signals.

The test data too were obtained by digitally adding noise to clean
signals. In our experiments the test speakers were represented in the
training set since we only had a limited amount of data available for
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Fig. 3. Example of signal enhanced by proposed algorithm. Top
panel: Actual clean signal. Second panel: Denoised narrowband
signal. Third: Restored narrowband signal. Fourth: Restored wide-
band signal.

logistic reasons. However in other tests [8] we have shown that NMF
need not be a speaker dependent algorithm. We therefore expect to
generalize to truly speaker independent situations.

The test data were denoised by the denoising algorithm, and the
signals were then processed by the proposed restoration algorithm.
Figure 3 shows an example of a signal that has been enhanced by
this algorithm. We note that even in the case where no bandwidth
expansion is attempted, some of the spectral structures attenuated
by denoising have been restored to some degree. In the case of the
bandwidth-expanded signal, additional structure has been introduced
into higher frequencies.

A fundamental problem with evaluating the output of our algo-
rithm objectively is that it is intended to restore spectral components
of a denoised signal. Denoising schemes typically improve the SNR
of a signal. Adding new spectral components to such signals may
in fact reduce the SNR. Adding spectral components, on the other
hand, is expected to improve the intelligibility of the signal. While a
complete MOS test to determine the intelligibility of a reconstituted
signal was beyond the scope of this paper, we did compute PESQ
[12] scores for the signals, which are nominally supposed to predict
voice quality, under the assumption that the processing would also
reflect in improvement of the quality of denoised signal, as measured
by the PESQ score. While voice quality is not a perfect proxy for in-
telligibility, there is nevertheless a correlation between the two [13].

Firstly, we noticed that on nearly all signals the denoising algo-
rithm improved the PESQ score by 0.5 or greater. We also observed
that on a majority of the denoised signals, the additional processing
did not significantly affect PESQ score, typically modifying it by
±0.1. Additional informal listening tests showed that these signals
had also not lost intelligibility significantly from the denoising and
the proposed restoration algorithm did not affect the intelligibility of
the denoised signals further.

However, on a small fraction of the signals (slightly over
10% of the signals), a significant improvement in PESQ score,
ranging from 0.3-0.5 was obtained from the restoration. Lis-
tening tests showed that on these signals the denoising algo-
rithm had significantly degraded the intelligibility of the sig-
nal. The proposed restoration algorithm improves the intelligi-
bility of the signal, often significantly, on these instances. The

example of Figure 3 is one of these examples. Audio ex-
amples and experimental details can be found on our website:
“http://mlsp.cs.cmu.edu/projects/audio/denoisingrestoration”. In no
instance did the the proposed restoration algorithm actually degrade
the intelligibility of the signal in informal listening tests. For band-
width enhanced signals, it was not possible to compute PESQ scores.
But listening intelligibility improved in every case, sometimes sig-
nificantly. Examples can be heard on the website.

6. CONCLUSIONS

The algorithm in its current form is intended to be lightweight, in
order to run on small devices. However, we believe significant im-
provements may be obtained by imposing temporal constraints and
other priors at the cost of computation. Preliminary experiments
show that imposition of such constraints results in further improve-
ment of intelligibility, while adding some distortion.
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