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ABSTRACT

Unsupervised lexicon learning techniques for audio-in-the-wild typ-
ically assume that only one of the lexical units is active at any given
point in time (hard quantization) or use soft counts to avoid commit-
ting to one unit (soft quantization). In reality, the audio will usually
be produced as a mixture of the different audio concepts in the lex-
icon. In this paper, we propose a model where the audio content is
assumed to be generated by a mixture of a sparse subset of the lexi-
cal units thus guiding the system toward a better estimate of presence
of the concepts. We present an approach that builds on current lexi-
con learning frameworks, and develop a novel algorithm to estimate
the contribution of different sources by imposing block-sparsity con-
straints on the lexicon. Our proposed framework shows significant
improvement over the standard lexicon learning framework on a re-
trieval task for audio-in-the-wild.

Index Terms— block sparsity, concept estimation, audio con-
tent analysis, audio retrieval

1. INTRODUCTION

The task of analyzing unconstrained audio (referred to as in the wild)
for retrieval has recently received a lot of attention. Early approaches
to indexing audio data were built around detecting specific sounds in
audio streams such as gunshots, laughter, music, crowd sounds etc.
[1], or mapping words to acoustic phenomenon [2] using known vo-
cabularies of sounds. In unconstrained audio, the set of such sounds
is large, and supervised data is required to build such detectors.

Instead of using audio libraries to build detectors, current ap-
proaches attempt to learn a lexicon of sounds from the audio data
[3, 4] in an unsupervised manner. (Here, and subsequently in this
paper, audio refers to audio-in-the-wild.) Unlike in speech and mu-
sic analysis, state of the art systems for large-scale retrieval of audio
typically use these lexicons to represent audio data as sequences of
the individual lexical units. They assume either that only one lexical
unit may be active at any instant (hard quantization) or avoid making
a decision by distributing the uncertainty in its estimate among all
the different units (soft quantization). Hard quantization will select
the dominant source alone, while soft quantization will estimate the
likelihood of presence of each of the sources independently instead
of jointly.

Typically, multiple different sources may produce sound con-
currently, which combine to produce the observed audio. When
there are very few atomic sources, learning the lexicon from the data
would result in the units modeling mixtures of sources, instead of the
atomic sources themselves. However, the number of possible mix-
ture will grow exponentially with the number of true atomic sources,
whereas learning and estimation techniques can only use limited vo-
cabularies for computational efficiency. Thus, the very large mixture

space will be mapped down to the finite vocabulary of smaller size,
collapsing mixtures from different sources together.

In this paper, we extend the current state-of-the-art for analysis
of audio in the wild to its logical next step, and present a framework
for explicit estimation of mixtures of lexical units in such settings.
We model each concept in the lexicon with a set of basis vectors–
using such a set allows us to account for various acoustic manifes-
tations of the same concept, by identifying a subspace from which
sound is produced for that concept. Each concept source, when ac-
tive, produces sound using a weighted combination of its basis vec-
tors. The observed audio is assumed to be generated by the additive
combination of the sounds produced by the active concepts. We as-
sume, further, that even though there may be many such concepts,
only a sparse subset will be active at any given instant. However,
since there are no constraints on the number of concept-specific ba-
sis vectors that may be active when that concept is active, the weight
vector at any instant will be block-sparse.

Fig. 1. Audio analysis (L) Only one unit can be active at any time
(R) Proposed approach, where a sparse subset of possible concepts
can be active concurrently.

To illustrate the difference, consider an example audio from a
birthday party scene where music is playing and people are talking
(Fig. 1). Units corresponding to music and speech should both be
active, but a hard-quantization-based system might choose the dom-
inant music (left panel, Figure 1), while a soft-quantization system
would attribute some speech (as well as music) audio to bases for
other concepts. This can lead to loss of discriminative information,
and makes further analysis using the lexical unit-based representa-
tion harder. The proposed framework would be able to recover the



co-occurrence of the different units, resulting in a better interpreta-
tion of the audio content, as shown in the right panel of Figure 1.

While we would ideally evaluate our proposed framework on the
accuracy with which it estimates source presence, no such datasets
currently exist for audio in-the-wild. We evaluated the proposed
analysis on an audio retrieval task, where the learnt lexicon and the
estimated presence of the units is used to characterize the audio file
for retrieval, and obtained significant improvements over standard
baselines. However, we expect such models to be useful for various
other applications (audio recounting, for instance), since the concur-
rent estimation of sources allow a finer-level analysis of the audio
than current systems would permit.

The rest of the paper is organized as follows: we present prior
related work in Section 2, and describe our proposed framework and
the various models in Section 3. In Section 4, we present the data
and compare performance of the various models on the data, before
concluding in Section 5.

2. RELATED WORK

Various approaches have been developed for estimating the content,
or the sources responsible for the content of audio. These include
the use of sound libraries to initialize a lexicon of sources, as well
as the use of unsupervised techniques to learn lexicons from the data
itself [1, 2, 3, 4, 5]. Any audio content can then be represented as a
sequence of these lexical units, and this discrete representation can
be used for indexing, retrieval and classification tasks.

Our framework builds on initial past work in estimating con-
current concept presence in audio content using PLSA [6]. Unlike
[6], our approach does not use annotated concept data, since such
data is expensive to obtain for audio-in-the-wild, and learns the set
of concepts unsupervised. It also incorporates the assumption that
only a sparse subset of concepts can be active at any given instant.
The ability to estimate these multiple sources allows us to expect
more robust performance from this framework. One can think of
this proposed framework as imposing a layer of signal separation-
based auditory scene analysis [7, 8, 9] with sparsity constraints on
top of any of the standard frameworks for audio content estimation.
As described in Section 3, the representation of each of the lexical
units using a set of bases means that we need to impose sparsity not
directly on the weights for the bases but on the sets, using techniques
for block-sparse weight estimation [10, 11]. Similar group sparsity-
based techniques have been employed for speaker identification [12].

The procedure for estimating the weights of these bases relate to
past literature on sparse recovery techniques [13, 14, 15]. It also re-
lates to dictionary learning techniques [3, 5, 16], with the difference
that we require the learned dictionary to permit block-sparse char-
acterization of data. The process of learning outlined in this paper
is similar to techniques used for data decomposition, such as NMF
[17] and semi-NMF[18] (where the latter permits the use of negative
data and bases), our proposed approach additionally imposes spar-
sity constraints on the estimation process. Unlike sparse variants of
the NMF formulation [19], however, our model requires concept-
level sparsity and estimates a block-sparse weight vector, instead.

3. PROPOSED MODEL

The framework proposed in this paper is designed to improve upon
one of the limitations of current audio content analysis systems, by
allowing multiple sources to be concurrently active. Our generative
process assumes, however, that only a sparse subset of all the possi-
ble concept sources (dictionary elements) could combine to produce

the audio. In this section, we present a novel framework for repre-
senting these sources and estimating their presence in the audio.

Our proposed model is designed to improve upon the existing
techniques mentioned earlier [3, 5, 4], and begins by using a standard
K-means algorithm to learn a dictionary of K units. This dictionary
can be used to assign each audio frame to one of the dictionary el-
ements, using Vector Quantization (VQ). Thus, for each dictionary
element, a set of audio frames is assigned to it from the VQ esti-
mation step. In our framework, we refer to each of the dictionary
elements as an atomic concept and model each concept with a set of
basis vectors (as opposed to a mean vector for K-means). For each
concept, this basis vector set consists of M basis vectors that can be
obtained either by randomly sampling exemplar frames (from the set
of frames assigned to that concept) or by using an iterative learning
process that we will shortly describe.

Let us first introduce the notation used in this section. We as-
sume that the observed data D (N audio frames, of dimensionality F
each; thus, an N x F matrix) has been generated by a non-negative
weighted combination of a sparse subset of concepts. We refer to
the set of bases for all concepts collectively as B, and that for each
concept as Bi (i ∈ [1,K], for K concepts). W refers to the weight
matrix of size (KM ) x N , with a weight vector for the entire basis
set at each time step. The weight for the j-th basis in the i-th concept
bag at the t-th time step is indexed by w(t)

ij .
We first describe the process of estimation of weights given the

set of basis vectors for each concept, while imposing concept-level
sparsity. Typically, algorithms for sparse estimation apply L0 norm
minimization on the vector being estimated. These include greedy
algorithms such as Iterative Hard Thresholding (IHT) [20] and Com-
pressive Sampling Matching Pursuit (CoSaMP) [15]. Alternatively,
other approaches relax the NP-hard L0 minimization problem by us-
ing an L1 penalty instead on the vector, as in the Lasso algorithm
[21]. In this paper, we work off of a generalized definition of spar-
sity for a vector discussed later, which can be shown to be analogous
to the L1 formulation. The generalized definition, however, allows
us to measure sparsity on a bounded scale between 0 and 1.

As mentioned before, our approach enforces sparsity at the con-
cept level instead of the individual weights for each basis vector,
leading to a block-sparse weight estimation process. To model this,
we introduce a coefficient α to measure the activation level of the
individual concepts:

α
(t)
i =

MX
j=1

w
(t)
ij , ∀i ∈ [1, 2...K] (1)

Since the weights are constrained to be non-negative, the activa-
tion level is always non-negative. We measure sparsity at the concept
level using α as in Equation 2. φ represents the concept level of spar-
sity, and lies between 0 and 1. A higher value for φ indicates higher
sparsity; φ is 1 when only one element in α is non-zero, and is 0
when all elements are equal and non-zero.

φ(α(t)) =

√
K −

P
i α

(t)
iqP

i α
(t)2
i√

K − 1
(2)

Given a concept dictionary (which includes the set of basis
vectors for the concepts), we can estimate a concept-sparse set of
weights for the data by optimizing the following objective function



(S represents the desired degree of sparsity):

min
W
||D −WTB||2 (3)

s.t. φ ≥ S
Wi ≥ 0, ∀i

The objective function above does not have a closed-form so-
lution, but a solution can be obtained using an iterative procedure
shown in Algorithm 1. Step 6 in Algorithm 1 requires the projection
of the α onto a non-negative space such that the projected vector
meets the desired sparsity constraints [19]. The projection operation
is described in Algorithm 2.

Algorithm 1 Obtaining an optimal set of weights to satisfy the ob-
jective function above, given a set of basis vector bags

Step 1: Initialize W randomly
Step 2: Compute α for each observation
Step 3:Project each α vector to be non-negative, have unchanged
L2 norm with L1 norm set to achieve desired sparseness
Step 4:W←W. ∗ (BTD)./(BTBW )
Step 5:Recompute α based on the new W
Step 6:Project each α vector to be non-negative, have unchanged
L2 norm with L1 norm set to achieve desired sparseness
Step 7: Go to Step 4, till maximum iterations are reached

Algorithm 2 Projecting a vector (x) onto the non-negative space
with desired L1 norm, and unchanged L2 norm

Step 1: pi ← xi + (L1 −
P
i xi)/dim(x)

Step 2: Z ← {}
Step 3: If i /∈ Z, mi ← L1/(dim(x)− size(Z))
Step 4: If i ∈ Z, mi ← 0
Step 5: p ← m + γ(p −m), where γ ≥ 0 is selected so the
resulting p satisfies the L2 norm constraint
Step 6: If pi ≥ 0, ∀i, return p, end
Step 7: Z ← Z ∪ {i : pi < 0}
Step 8: pi ← 0, ∀i ∈ Z
Step 9: c← (

P
pi − L1)/(dim(x)− size(Z))

Step 10: pi ← pi − c,∀i /∈ Z
Step 11: Go to Step 3

At training time, the estimated weights can be used to re-
estimate the bases. Thus, for the j-th basis for concept i:

Bij =

P
t w

(t)
ij ×D

(t)P
t w

(t)
ij

(4)

At test time, the weight vector obtained can be used to estimate
the occurrence (F ) of the individual concepts in an audio file with T
frames:

Fi =

j=MX
j=1

t=TX
t=1

w
(t)
ij (5)

While the basis vectors for our experiments should ideally be
in the spectral domain, the high dimensionality (typically, 257-513)
often result in poor basis estimation– indeed, using exemplar-based
spectra as an overcomplete basis set is common [22, 23]– and the
domain of audio in-the-wild exacerbates this problem. Instead, we

work in the dimensionality reduced Mel-Frequency Cepstral Coeffi-
cients (MFCC) domain, which has been used in past work to explain
MFCCs for speech recognition [23, 24], and we empirically find that
this representation proves effective.

4. EXPERIMENTS

Since we do not have labeled data that can be used to directly analyze
the accuracy of the estimation process, we evaluate our framework
on an audio retrieval task. In this section, we describe the data and
the task for our experiments (Section 4.1), the systems that we com-
pare (Section 4.2), the classifier we use (Section 4.3), and finally, the
experimental results (Section 4.4).

4.1. Audio Retrieval Dataset and Task

For our experiments, we use the BBC Sound Effects Library CDs
1 – 20 consisting of 1120 different audio clips [25]. This library
consists of various conceptual categories of sound, and the audio
tracks contain complex audio due to the presence of many different
sounds; e.g. a supermarket audio contains voices, sound from the
checkout bell, trolleys and baskets being stacked. The recordings are
of a high and consistent quality, and allow us to compare different
systems in a setting where additional confounding factors are not
present, as is often the case in Youtube-style, user-generated content
with different recording conditions and equipment.

The entire dataset was sampled at 16KHz, and 13-dimensional
Mel-Frequency Cepstral Coefficients (MFCC) were extracted and
used to represent the data, in all the experiments reported in this pa-
per. While there are a number of categories in this dataset, we only
use those that have at least 15 positive instances belonging to the
category. Thus, we have the following 10 categories– Exterior at-
mospheres, Household, Interior Backgrounds, Transport, Animals,
Audiences, Electronic Equipment, Water, Birds, Warfare. All the
other files have a negative label for each of the 10 categories.

The audio retrieval task is defined as follows: given one of the 10
categories as input, the task is to retrieve all audio files belonging to
that category from the test collection. We compute Missed Detection
(MD) and False Alarm (FA) rates as follows: suppose there are Nt
test files, with Ci belonging to class i, and the detector predicts Ni
as belonging to class i, and Di of these were correct. Then:

MD =
Ci −Di
Ci

;FA =
Ni −Di
Nt − Ci

(6)

We report results using the average Area Under MD-v/s-FA
Curves (AUC) using 5-fold cross validation on the entire data. Since
the curve measures error of the system being evaluated, the lower
the area under the curve, the better the performance.

4.2. Systems Used for Retrieval

We use the Vector Quantization technique at the frame level to ini-
tialize the set of basis vectors for each concept in our system. The
approach presented in Section 3 was then used to compute a concept-
sparse estimate of the weights for each audio frame. We then use
Equation 5 to compute the relative occurrences of each concept (i):

Fi =
FiP
i Fi

, ∀i ∈ [1, 2...K] (7)

The audio file is then represented as a K-dimensional feature
vector for the retrieval task, with one feature for each concept where
the feature value is the relative occurrence (F) for the concept. We
refer to this system using sparse concept representation as SpaCon.



Fig. 2. Comparison of the various systems with average AUC (y-
axis) (lower is better)

The current state-of-the-art in audio retrieval systems currently
use ”bag-of-words” representations of recordings generated using
the Vector Quantization technique [5, 4]. We use a VQ-based sys-
tem as the baseline for comparison with our proposed framework. A
similar relative occurrence, K-dimensional feature representation is
used for the VQ baseline, as well. We refer to this system as VQ.

In the estimation process outlined in Algorithm 1, the projection
of the concept activation vector (α) to the non-negative space with
desired sparsity results in some of the concepts being set to 0 early
in the iterative process. The update rule for the weights in Step 4
can no longer recover non-zero weights for those concepts in further
iterations. To avoid erroneous concept selection at an early stage,
we implement a CoSamp-style approach [15] where the projected
vector is augmented with a support set consisting of the 2s concepts
(for an s-sparse projected vector) with the highest gradient values in
each iteration. At the end of the iterations for weight estimation, this
augmented vector is finally projected down to the desired sparsity
level to obtain the final sparse estimate. Again, audio files are repre-
sented using the relative occurrence feature representation, as in the
SpaCon system. We refer to this system as SpaCon-CoSaMP.

4.3. Random Forest Classifier

The audio retrieval requires us to predict whether each audio file be-
longs to a particular class or not. Hence, we train binary classifiers
for each of the 10 audio categories to predict whether a test file be-
longs to the class or not (one-versus-all).

The experiments we report in this paper employ a Random For-
est [26] classifier for each category. While any classifier could have
been used for this task, we chose random forest classifiers as they
are resistant to overfitting. Random forests are an extension of deci-
sion tree classification techniques, where the training process grows
many trees instead of a single one, using held out data is used to get
an estimate of the error as trees are added to the forest. The trees
in the forest are grown as far as possible, and pruning is not used.
Given a new test file, each of the trees in the forest returns a class
label, which is used in a weighted vote to determine the final pre-
dicted label. In our experiments, we use 500 trees. For details of the
training process, the reader is referred to [26].

4.4. Experimental Results

Figure 2 compares areas under the curve (AUC) for the 3 systems
described above for varying sizes of the concept lexicon, using 5-

Fig. 3. Effect of changing the desired sparsity on average AUC (y-
axis) (lower is better) in the SpaCon system

fold cross validation on the entire dataset. Recall that since the curve
plots missed detections against false alarms, a lower AUC is better.

The sparse concept estimation-based systems provide signifi-
cant improvement over the VQ baseline. Since the desired degree
of sparsity can be modified by the φ parameter, this improvement
is expected, since the sparsity can be relaxed to create the equiva-
lent of the VQ system. We note that the use of the CoSaMP-style
estimation with an augmented support does not appear to improve
performance on this retrieval task, resulting in slightly deteriorated
performance, in terms of AUC. However, we maintain that such an
approach should be optimal in the general case.

The degree of sparsity (φ) imposed on the estimation process
outlined earlier has a significant effect on the performance of the
system. Figure 3 tracks the change in AUC for the SpaCon system
with changing the degree of desired sparsity (φ) for different lexicon
sizes. This plot shows an optimal operating point for φ values around
0.85 for the different lexicon sizes.

5. CONCLUSIONS AND FUTURE WORK

We presented a novel, signal-separation based approach to au-
dio content analysis, and demonstrated significant improvement in
performance over the commonly used Vector Quantization based
technique for audio retrieval on a dataset containing complex audio
tracks. While this improvement is exciting by itself, we believe that
the importance of this work lies in the fact that it presents a more
natural model for the understanding of audio content, due to the
assumptions of sparsity among the very large space of natural audio
concepts. The improvements in the audio retrieval task suggest that
this technique recovers a better estimate of the concept occurrences.

The objective function being optimized in Equation 3 could be
modified in appropriate settings to add further constraints. For in-
stance, given prior external knowledge about the relations between
the various concepts in the lexicon or about the domain of data, the
estimation process could make use of expected structure in estimat-
ing the presence of the different concepts.

The improved estimate of concept co-occurrence itself could be
used in various ways in the future. Specifically, in past work, we
developed a model for extracting patterns over the low-level units
(such as VQ) in order to understand how lower-level acoustics (units)
combine to produce higher-level semantics [27]. The framework
proposed here could be used in conjunction with the one in [27],
to better leverage the concurrent occurrence structure for improved
semantic analysis. We continue to actively explore these directions.
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