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Abstract—Detecting sound events in audio recordings is a
challenging problem. A detector must be trained for each sound
to be classified. However, the recordings of the examples used to
train the detector rarely match the conditions found in the test
audio to be classified. If the event detection problem is posed as
one of Bayes classification, the problem may be viewed as one
of mismatch between the true distribution of the data and that
represented by the classifier. The Bayes classification rule results
in suboptimal performance under such mismatch, and a modified
classification rule is required. Alternately stated, the classification
rule must optimize a different objective criterion than the Bayes
error rate computed from the training distributions. The use
of entropy as an optimization criterion for various classification
tasks has been well established in the literature. In this paper
we show that free-energy, a thermodynamic concept directly
related to entropy, can also be used as an objective criterion for
classification in such scenarios. We demonstrate with examples on
classification with HMMs that minimization of free-energy is an
effective criterion for classification under conditions of mismatch.

I. INTRODUCTION

The relationship between the thermodynamic principle of
entropy and the information theoretic concept of entropy has
long been known [1], [2], [3], [4]. In fact, frequently used terms
in machine learning and statistics, such as “Gibbs” sampling
and “Boltzmann” machines are drawn from Thermodynamics.
Not surprisingly, the concept of “Free Energy”, originally
defined for thermodynamics, has also found its analog in
pattern classification and machine learning.

Invocations to the concept of entropy and the related notion
of cross-entropy, in particular, are ubiquitous in statistical
pattern classification. Entropy can alternately be viewed as
the expected log-likelihood of a random variable. Maximum-
likelihood estimation, a popular tool for estimation of distri-
butions and models, as well as for classification, effectively
minimizes empirical estimates of the relative entropy between
the true distribution of a random variable and that specified
by the model [5], [6]. Entropy and cross-entropy can be
used to characterize both the compactness of a data set and
the diversity of separate data sets. As a result, entropy has
been used as a criterion for classification and clustering of
data since at least the early eighties [7], [8]. Entropy has
also been used as a measure of the structure in a data or
a model – low entropies implying high predictability and
hence high degree of structure (or organization) [9]. On the
other hand, lack of information has been characterized as high
entropy: the celebrated maximum-entropy methods employed
to learn models in a variety of fields such as text processing,
information retrieval, speech and audio processing [10], [11],
[12] and even signal processing [13] effectively attempt to

capture known facts about the data, while assuming maximum
ignorance about other facets.

The concept of “free energy” too has found widespread use
in various fields of computer science such as statistics, opti-
mization, and machine learning. One of the earliest invocations
to free energy was in the now-famous Metropolis Hastings
algorithm [14]. In this and subsequent algorithms of a similar
nature [15], [16] free energy is employed as a characterization
of the randomness in the steps taken by an algorithm in
proceeding towards its objective. The “temperature” of the
system is used as a control parameter over this randomness.
From another perspective, increasing the temperature of a
system and thereby its free energy is equivalent to flattening the
landscape of an objective function that is being searched for an
optimum. This perspective has naturally led to the concept of
annealing [15], where the temperature of a system (or objective
function) is gradually lowered from a high value, to enable an
optimization algorithm to escape local optima and increase its
likelihood to arrive at a global optimum.

An alternative interpretation is also presented in pattern
analysis mechanisms that are based on self organization,
such as self-organizing maps [17], Hopfield networks [18],
Boltzman machines [19] and the various neural network ar-
chitectures that build on them [20]. Here the analogy is closer
to that in the well known spin-glass effect [21], in which
a large number of free-floating magnetic dipoles attempt to
align themselves to a local magnetic field, while also affecting
the field experienced by their cohorts through their own
orientation. The spin glass has a finite number of minimum-
free-energy stable configurations into which it can arrive, and
the “attraction” of these configurations depends further on
the temperature of the system. Analogously, self-organizing
network structures attempt to arrive at stable configurations
that locally minimize an equivalent of free energy, and their
ability to arrive at these configurations is in turn governed by
a temperature parameter.

In all cases, (the computational analog of) free energy has
eventually been used as a handle to achieve improved opti-
mization over complex, possibly non-convex objective function
landscapes.

In this paper we hypothesize that free energy provides a
natural objective function to be minimized for classification
as well. Particularly, in scenarios such as speech recognition
and audio labeling, where evidence is obtained from multiple
sources. If one of the sources is noisy, recasting classification
as a free-energy minimization problem gives us a natural
means of flattening the peaks and valleys in the contribution
of the noisy component to the overall classification objective.
Moreover, expressing this in terms of a “temperature” also



provides an intuitive explanation – the noisy information
source may be viewed as being at a “higher” temperature.

The literature on the direct use of free energy as an
objective function for classification is, however, sparse, except
in situations where it is used as a mechanism for annealing a
solution towards the true optimum [22]. Classification at raised
temperatures is generally not performed, and in the case of
speech recognition or audio labeling, the only related work
we have found is our own prior work on the topic [23].

The rest of this paper is organized as follows. In Section II
we discuss the general case of HMM-based classifiers. Free-
energy based classification is briefly explained in Section III.
Section IV outlines our proposed formulation of heating of
HMM parameters to emulate free-energy based classification
in practical systems. Experimental results on audio retrieval
based on audio labeling, and on speech recognition are pre-
sented in Section V. Conclusions are presented in Section VI.

II. THE SPECIFIC CASE OF HMM-BASED CLASSIFIERS

The formulation of a framework for free-energy based clas-
sification depends on the type of classifier under consideration.
In this paper, we will focus on the specific case of HMM-based
classifiers since these are successfully used in many appli-
cations that rely on modeling generative processes, including
state-of-art large vocabulary speech recognition systems. We
also use the latter for audio event labeling in this paper.

HMM-based classifiers of continuous speech or audio are
statistical pattern classifiers which model sound units using
hidden Markov models (HMMs). Given a sequence of data X
derived from the audio signal, the classification problem that is
solved is that of finding the class c(X) for which the following
expression, given by Bayes classification rule, is maximized:

c(X) = arg max
C

P (C)P (X|C) (1)

where C represents any class, P (C) is the a priori probability
of C, and P (X|C) is the probability of X given by the HMM
for C. This can be equivalently expressed as

c(X) = arg max
C

{
logP (C) + log

∑
s

P (X|s, C)

}
(2)

where s is any state sequence through the HMM for C, that
might have generated X. This is approximated by the Viterbi
algorithm as

c(X) = arg max
C

{
logP (C) + max

s
{logP (X, s|C)}

}
(3)

The Bayes classification rule has been shown to be optimal
when the class distributions represent the true distributions of
the data to be classified. However, in practical systems, the
distribution of the test data cannot be guaranteed to match
those of the classifier. The parameters of the HMMs are
learned from a corpus of training data through a tedious, and
often intricate process. Once trained, the system is frequently
deployed in varied acoustic environments (or used by diverse
users in the case of speech), as a result of which the test
data are rarely identically distributed to the training data.
Consequently, the classification performance achieved with the
Bayes classification rule is far from optimal.

The conventional solution to this problem is to modify
the parameters of the HMMs in the classifier to better rep-
resent the test data, using one of several methods that have
been proposed for the purpose (e.g. MAP/MLLR) [24], [25].
Bayesian classification is then performed using the modified
parameters. While these procedures are highly effective, they
require adaptation data that are similar to the test data, and also
require significant offline computation to obtain the adapted
parameters.

An alternative strategy is proposed in [23] where improved
recognition of mismatched data is achieved by modifying
the classification rule itself. In the modified classification
rule, a free-energy term that is governed by a temperature
parameter T , is defined for the various classes. The classi-
fication rule selects the class with the lowest free energy. The
HMM parameters are not modified. Further, the rule itself
is computationally no more expensive than the conventional
Bayesian classification rule. The modified rule has no Bayesian
interpretation except in the specific instance when T = 1.
Classification at elevated temperatures (T > 1 ) is observed
to result in large improvements in recognition performance on
mismatched test data.

In the following two sections we propose a third option for
integrating free enery criteria into HMM-based classification. It
can be shown that elevating the temperature of an HMM in the
free-energy expression given in [23] is equivalent to reducing
its free energy. We therefore attempt to modify the parameters
of the state output densities of the HMMs in a manner that
reduces their free energy, prior to classification. We refer to
this procedure as heating the HMMs. As in the case of free-
energy based classification, the procedure is based only on the
assumption of mismatched test data, without any reference to
the specific test data themselves. The resulting HMM remains a
probability density with a total probability mass of 1. Bayesian
classification rules can now directly be applied to the modified
HMM. Experimental results show that this can indeed result
in significant improvements in classification performance on
mismatched data.

III. FREE-ENERGY BASED CLASSIFICATION

Free energy is a characteristic of thermodynamic systems.
It is the amount of work required to restore the system to a state
of equilibrium, implying by definition that when a system is
in equilibrium, its free energy is minimum. Consider a system
at temperature T that has an energy Hs when it is in some
configuration s. Let Ps be the probability that the system is in
configuration s, and P be the set of all Ps. The free energy
of the system is defined as

F (P ) =
∑
s

PsHs + T
∑
s

Ps log(Ps) (4)

The first term represents the average energy in the system and
the second term represents the entropy of the system. The
minimum free energy is derived by minimizing Equation 4
with respect to P and can be shown to be:

F = −T log
∑
s

exp

(
−Hs

T

)
(5)

Drawing from this thermodynamic analogy, free energy has
been defined for other systems where the notion of a system



configuration exists. One such definition is that for parametric
statistical models with latent variables, mainly for the purpose
of estimation of their parameters [22].

The free energy of an HMM is defined as follows: let ΛC
represent the parameters of the HMM for class C. Let the
a priori probability of C be P (C). Let X be the data to be
classified, and s be any valid state sequence through the HMM,
that can generate X . We equate s with the configuration of the
HMM and define the energy of s, Hs, as

Hs = − logP (C)− logP (X, s|ΛC) (6)

This is the negative of the log of the joint probability of the
class, the state sequence, and the data. Using Equation 5, the
free energy of the system (i.e. the HMM) is now given by

FC(X|ΛC) = − logP (C)−T log

(∑
s

P
1
T (X, s|ΛC)

)
(7)

Classification with free energy associates a data sequence X
with the class c(X) according to the rule:

c(X) = arg min
C

FC(X|ΛC) (8)

The free energy for an HMM can be efficiently computed using
the following variant of the forward algorithm:

α(s, t, C) = −T log
∑
s

(
e−α(s

′,t,C)a(s′, s)P (xt|s)
) 1
T

(9)

α(s, 1, C) = − logP (C)− log π(s)− logP (x1|s) (10)

FC(X|ΛC) = −T log

(∑
s

e
−α(s,N,C)

T

)
(11)

where a(s′, s) is the transition probability from state s′ to state
s, π(s) is the initial probability of s, and P (xt|s) is the value
of the state output density of s at xt. The minimum-free-energy
classification rule is identical to the Bayes classification rule
at T = 1. Classification performance has however been empir-
ically observed to be best at higher temperatures, particularly
when there is a mismatch between the HMM and the true
distribution of the data to be classified.

IV. MODIFYING HMM PARAMETERS TO DECREASE FREE
ENERGY

The free energy of an HMM as computed using Equation
7 does not represent a probability, and the classification rule
in Equation 8 is not the Bayesian rule. Nevertheless it is
theoretically possible to redefine the parameters of statistical
models in the classifier such that the Bayesian classification
rule based on the redefined models is identical to the minimum
free-energy classification rule of Equation 8. It can be shown
that such redefinition of the statistical parameters requires
modification of not only the parameters of the distributions
of the classes, but also the a priori probabilities of the classes
themselves. The modified class parameters must be defined in
terms of a partition function that cannot be expressed in closed
form for HMMs. The modified a priori class probabilities are
a function of both the temperature and the parameters of the
individual classes. It is not clear that the resultant statistical
model can still be expressed as an HMM.

On the other hand, conversion of density parameters to sim-
ulate minimum-free-energy classification using the Bayesian
classification rule is tractable when class distributions are mix-
ture Gaussian densities rather than HMMs. Mixture Gaussian
class distributions have the following form:

P (X|ΛC) =
∑
k

wC,kG(X|µC,k, σC,k) (12)

where wC,k, µC,k and σC,k are the mixture weight, mean
and variance of the kth Gaussian in the density of class
C, and G(X|µ, σ) represents the value of a Gaussian with
mean µ and variance σ at a vector X . It can be shown
that minimum-free-energy classification at temperature T is
identical to Bayesian classification with modified mixture
Gaussian densities PT (X|ΛC) and a priori class probabilities
PT (C) that have the following form:

PT (X|ΛC) =
∑
k

w̃C,kG(X|µC,k, TσC,k) (13)

where the new mixture weights are given by

w̃C,k =
1

ZC
w

1
T

C,k|σC,k|
T−1
2T (14)

where ZC is a normalizing constant for the mixture weights
of C, and

PT (C) =
ZC
Z
P

1
T (C) (15)

where Z is a normalizing constant.

We note that state output densities in HMMs are usually
modeled as mixture Gaussian densities. In Equation 7, which
specifies the free energy of an HMM at a temperature T , the
individual P (X, s|ΛC) components used within the second
term on the right hand side are true probabilities, computed
as

P (X, s|ΛC) = π(s1)P (x1|s1)
∏
t>1

a(st−1, st)P (xt|st) (16)

where st is the state at time t in the state sequence s and xt
is the tth observation vector in X . In this paper we propose
to use a modified definition of the free energy as follows:

F̃C(X|ΛC) = − logP (C)− log
∑
s

P̃ (X, s|ΛC) (17)

where

P̃ (X, s|ΛC) = π(s1)F (x1|s1)
∏
t>1

a(st−1, st)F (xt|st) (18)

where F (xt|st) is the free energy of the state output density
of st. The term P̃ (X, s|ΛC) does not represent a probability.
Since we wish to permit the use of the Bayesian classification
rule, we do not use Equation 18 directly. Instead we modify the
parameters of the state output densities of the state by modify-
ing the mixture weights of all densities according to Equation
14. We refer to the modification of state density parameters in
this manner as heating the HMM. The modified densities now
result in likelihood values that are approximations to scaled
versions of likelihood values that are approximations to scaled
versions of the free energy. Instead of using Equation 18, we
redefine P̃ (X, s|ΛC) as

P̃ (X, s|ΛC) = π(s1)P̃ (x1|s1)
∏
t>1

a(st−1, st)P̃ (xt|st) (19)



where P̃ (xt|st) is the state output density value of st computed
using the modified parameters. F̃C(X|ΛC) now still represents
a probability and the conventional Bayesian classification
rule can be applied. The conventional forward and Viterbi
algorithms can be used to compute class probabilities.

The equations above show how forward and best-state
scores, computed at elevated temperatures. For recognition,
we employ the modified state output densities values within a
conventional Viterbi search as given in Equation 19.

V. EXPERIMENTAL EVALUATION

We performed two sets of experiments: one on an audio-
based multimedia event retrieval task, and a second set on a
conventional speech recognition task. Experiments were aimed
at highlighting the effect of incorporating the free-energy term
in the HMM state distributions under conditions of mismatch.

A. Audio Classification for Retrieval

Our first experiment was conducted on the MED11
example-based multimedia-event retrieval task [26]. The task
here is as follows: we are given a collection of multimedia
recordings. We are also provided a small number of exam-
ples of recordings representing a category of events such as
“repairing an appliance”, “parade”, or “skateboarding”. The
objective is to retrieve all other instances of the same category
from the data set, based on what can be learned from the
example recordings. In our experiment we only employed the
audio components of the individual recordings to perform the
retrieval; the video was not used.

The approach employed for the retrieval was to compute
a vector descriptor for each recording. Vectors obtained from
positive and negative examples of the target event were used
to train a binary classifier. Subsequently, all recordings in the
dataset used for the experiment were classified by this classi-
fier. In our experiments we used a random forest classifier.

For our experiment we used a data set of 2300 files. The
data set included (but was not limited to) approximately 100
examples each of 10 categories of events, labeled “E006”-
“E015” in our plots and tables below. Events from any category
were considered to be negative for other events. All results
were obtained through an 8-way jackknife experiment over
the 2300 files.

To obtain the vector descriptors we trained HMMs for 417
different types of sounds, such as “car noise”, “glass breaking”
etc. using recordings from the Foley database [27]. These
sounds may be considered to be the equivalent of “words” that
occur in the recordings. Any recording may thus be character-
ized by the relative frequency with which they occur in it, and
it may be expected that the differences between different event
categories (E006 etc.) will manifest as differences in these
relative frequencies. HMMs were trained on sequences of Mel-
frequency cepstral vectors obtained from the recordings. State
output distributions were set to be mixtures of 4 Gaussians.
Thereafter, each recording was “decoded” into a sequence of
audio events using these HMMs. For the purpose of decoding,
we assumed that all events were equally probable; this can
be expressed as a simple “unigram” grammar over events
where all events are equiprobable. The CMU Sphinx-3 speech

recognition system was used for the experiment, both to train
HMMs and to decode audio.

Once each recording was decoded into a sequence of
events, we computed a simple 417-dimensional bag-of-words
representation for each recording by counting the number of
times each event was found to have occurred in it.

The Foley data have all been recorded in a studio and
are clean. On the other hand, the MED11 data are real-life
recordings obtained from public sources, and are noisy, where
sounds rarely occur in isolation, are corrupted by a variety of
background noises, and are recorded over a variety of channels.
Frequently music is overlaid on the recordings. Consequently,
the data are greatly acoustically mismatched with the Foley
recordings.

We compensated for the mismatch by increasing the tem-
perature at which decoding was performed. Figure 1 shows
the results obtained in the form of DET curves, which plot the
percentage of missed detections as a function of the percentage
of false alarms for each of the ten event classes. We note that
the retrieval is obtained at T = 1.75 is better than that at
T = 1.0.
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Fig. 1. Multimedia retrieval with Foley events decoded at various tempera-
tures. The red, blue and black dots in each of the figures represent operating
points with MD 75%, 50% and 35% respectively, when MD/FA = 12.5.

Table I shows the percentage missed detection of events
at the operating point where the ratio of missed detections to
false alarms is 12.5 – the standard operating point specified in
IARPA evaluations. We show the results at four temperatures,
including the baseline (T = 1.0).

As a comparator, we also show results using “AUDs”.
AUDs [28] are sound units learned directly from the audio
in an unsupervised manner. Since the AUDs are learned from
the database itself, the HMMs for the AUDs are “matched” to



the data. AUDs based descriptions may hence be considered
to be descriptions obtained from “matched” models, and can
be viewed as establishing an upper bound on the performance
to be obtained under the conditions of the experiment.

TABLE I. PERCENT MISSED DETECTION AT MD/FA = 12.5.

Event T=1 T=1.5 T=1.75 T=2 AUDS
E006 51.5 49.0 48.4 50.3 45.2
E007 82.0 75.4 70.7 77.3 79.2
E008 60.8 59.1 57.9 60.8 50.3
E009 79.6 77.2 74.8 78.0 63.4
E010 87.5 86.0 82.8 86.7 82.0
E011 77.3 74.8 73.1 75.6 71.4
E012 68.2 65.0 61.7 65.8 60.1
E013 85.5 81.7 76.9 81.7 72.1
E014 48.3 46.0 44.2 45.9 43.4
E015 81.65 75.2 73.4 78.9 63.3

We observe from the above results that when we use Foley
models, the best results are obtained at elevated temperatures,
which effectively account for the mismatch between the Foley
data and the MED data. Elevating the temperature improves
performance at nearly all operating points. The best results
are obtined at T=1.75 in this case. Interestingly, the optimal
temperature was the same for all events. We believe this to be
an oddity of the database. Increasing the temperature further
results in reduced performance. Also, consistently with our
original hypotheses that raising the temperature only accounts
for mismatch between the distributions of training and test
data, we find that the best performance overall is obtained with
the truly matched AUDs models, although in some cases the
difference between the performance obtained with the AUDs
and the optimal Foley-based decodes is relatively small.

B. Speech Classification for Transcription

While our first experiment demonstrates the validity of
free-energy based classification under conditions of acoustic
mismatch, our second experiment demonstrates the same when
the mismatch is due to non-acoustic factors. Our second
experiment was conducted on speech signals, where mismatch
between training and test audio arose from accent mismatch.

Experiments were performed with the NATO Non-Native
(N4) Speech corpus [29]. This is a database of non-native
speech collected by the NATO Research Study Group and
made available to the community from the Linguistic Data
Consortium (LDC). The database consists of accented speech
from people of four different nationalities: German (DE),
Dutch (NL), Canadian (CA) and British (UK). Baseline acous-
tic models were trained from the US English TDT2 [30]
and TDT3 [31] speech corpora, also available from the LDC.
We used the CMU Sphinx speech recognition system for our
experiments. The system uses several different search strate-
gies for decoding. We used the full flat decoding strategy for
continuous speech. The acoustic models used were continuous
density 3-state Bakis topology HMMs with no skips permitted
between states. The models comprised 6000 tied states, with
8-component Gaussian mixture state output distributions. An
ARPA format trigram language model was built using military
protocol text collected from the internet. There were no out-of-
vocabulary words, but the NATO database did not contribute
otherwise to the language model.

The test data were recognized at several temperatures.
Table II shows the word error rates obtained for each accent,

against the temperature at which the data were decoded. The
highlighted (yellow) column in the table corresponding to
T = 1 is exactly identical to the standard Bayesian decoding,
as explained earlier. Columns for T < 1 show recognition
performance at lowered temperatures, whereas those at T > 1
show the same at elevated temperatures. Figure 2 shows the
performance in graphical format to present the trends visually.
Each subplot shows the performance for a single accent.
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Fig. 2. WERs as a function of temperature for different accents. T=1
represents the conventional MAP decoding strategy.

Once again, we note from the results that the optimal
recognition performance is not obtained at T = 1.

Figure 2 summarizes the effect of raising temperature. We
observe that there is a general trend of improved recognition as
temperature increases to 2.1; however a “bump” is observed at
a temperature of 1.4 or so, and the performance at 1.2 appears
to be some form of local optimum.

The best result in all four cases occurs at an elevated
temperature in the vicinity of T = 2; specifically, if a single
elevated temperature were to be chosen as the operating point,
it would be T = 2.1. The difference between the baseline
WER at T = 1 and the best result at elevated temperatures is
quite large, at nearly 18% absolute in three of four cases.

VI. CONCLUSION

In both of our experiments we find that elevation of
temperature results in significantly improved classification
results under conditions of mismatch. Morever, the method
is not merely effective against acoustic mismatch, but seems
to generalize to other forms of mismatch as well, e.g. accent
mismatch in the case of speech signals. The biggest advantage
here is that it requires minimal implementation effort: in the
experiments here all it takes is a simple adjustment to the
HMM parameters in the acoustic models. Similarly simple
implementations can be expected for other types of models
as well.

More generally, the notion of “temperature” and “free-
energy” have often been invoked in the context of annealing
for optimization of objective functions defined over continuous
support. Classification, on the other hand, is typically a search
over a discrete support, and not usually viewed as an optimiza-
tion problem. This is generally considered to be distinct from



TABLE II. PERFORMANCE OF MAXIMUM-LIKELIHOOD AND FREE-ENERGY BASED SPEECH RECOGNITION, IN TERMS OF PERCENT WORD ERROR RATE.
THE T = 1 COLUMN HIGHLIGHTED IN YELLOW CORRESPONDS TO CONVENTIONAL BAYESIAN DECODING. THE BOLD NUMBERS ARE THE BEST RESULTS

OBTAINED IN EACH ROW.

Temp 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
NL 87.2 75.3 68.8 68.8 70.9 72.2 71.1 68.6 68.1 65.8 62.8 61.3 61.2 62.1 63.8 65.5 67.2
DE 90.4 79.0 74.0 73.2 78.1 78.0 75.4 73.9 72.4 69.6 67.3 64.7 62.5 61.9 61.3 61.5 62.5
CA 67.0 56.6 48.8 46.2 45.9 46.1 45.4 43.7 41.5 40.4 39.2 38.7 38.8 40.3 41.9 44.1 46.3
UK 96.1 82.6 74.4 71.6 71.0 69.5 68.1 66.7 66.4 65.2 64.2 64.0 64.1 64.9 65.9 67.5 69.6

the situations where notions of free-energy and temperature
may be invoked.

The two problems we have studied here, however, present
an interesting case. In the case of the audio data, the set of
classes is not merely the subset of 417 Foley sounds, but the set
of all possible event sequences that may occur in a recording.
Similarly, the true set of classes that we search over in the
speech recognition example is the set of all possible word
sequences. Thus, although the class set is discrete, the set itself
can be infinitely large, suggesting that the concept of annealing
may be drawn upon if the search space could somehow be
ordered and represented over a continuum. However, how this
may be done is unclear.

Although we have not actually cast the problem of classi-
fication in this light in this paper, we have definitely demon-
strated that the concept of classification at elevated tempera-
tures can indeed be cast in formal terms, and furthermore, that
even in a single pass of classification, elevation of temperature
can result in significantly improved recognition. In future work,
we aim to expand this to a fuller formulation of annealed
search for optimal classification over infinite sets.

This is of particular interest in the case of semantic
decoding of audio recordings. Given the potentially infinite
set of basic audio events themselves, as well as the fact that it
is difficult to obtain large quantities of matched annotated data
(particularly considering that audio recordings in the wild are
rarely pristine, and almost always comprise mixtures of many
sounds), mismatches between training and test data will always
occur. We speculate that techniques such as the proposed free-
energy based decoding at elevated temperature will be key to
resolving such problems.
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