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ABSTRACT

In standard microphone array processing for distant speech recogni-
tion, the beamformed output is postfiltered to reduce residual noise.
Postfiltering is usually performed through a Weiner filter whose pa-
rameters are estimated from both the beamformer output and the
signals captured at the microphones themselves. Conventional post-
filtering methods assume diffuse or incoherent noise at the various
microphones in order to estimate these parameters. When the noise
does not conform to this assumption they perform poorly. We pro-
pose an alternate postfiltering mechanism that attenuates noise by
estimating and separating out the contributions of speech and noise
explicitly. Experiments on a corpus of in-car two-channel recordings
show that the proposed postfiltering algorithm outperforms conven-
tional postfilters significantly under many noise conditions.

Index Terms: Microphone arrays, postfiltering, beamforming, com-
positional models, signal separation.

1. INTRODUCTION

Microphone arrays are often used to capture speech signals in
distant-speech recognition scenarios, where speech and interfering
noise sources are spatially separated. Array processing aims to spa-
tially filter incoming signals to selectively enhance signals from the
target (speaker’s) location through beamforming. The beamformer
output, however, continues to include noise, albeit at an attenuated
level. The output must be postfiltered to further reduce this residual
noise. Conventional postfiltering approaches are, in essence, Wiener
filters that attempt to estimate the clean speech signal from the po-
tentially noisy one that emerges from the beamformer. The estimate
of the power spectral density (PSD), or alternately, the autocorrela-
tion of clean speech, that is required by the Wiener filter is derived
from assumptions about the noise, e.g. that the noise is diffuse [1]
or uncorrelated at the individual microphones [2]. The effectiveness
of Wiener filters generally depends on the accuracy of the estimate
of the clean speech PSD — imprecise estimates result in the atten-
uation of speech components along with noise [3]. This holds true
for microphone array postfilters as well — if the assumptions about
the noise are not correct, the estimated clean speech PSD is incor-
rect and filter performance degrades. Even if the assumptions are
reasonable, robust estimation of filter parameters typically requires
averaging over multiple microphones, and filter performance can de-
grade for small arrays with few microphones, for instance if there are
only two microphones.

In this paper we propose an alternate mechanism that treats the
problem of postfiltering as one of semi-supervised signal separation,
rather than one of noise filtering. For the separation, we employ a
compositional model traditionally associated with monaural source

separation [4]. The technique assumes that the beamformer output
is a composition of unit elements of speech and noise. The compo-
sitional units of the noise are estimated through an alternate channel
in the beamformer, while the units of speech are learned from the
beamformed signal itself. The filter uses these to suppress the con-
tributions of noise to achieve a cleaner signal.

The proposed method has multiple advantanges over conven-
tional postfiltering methods. Firstly, it requires no assumptions about
the noise to be suppressed, since it explicitly characterizes the dom-
inant noise. Secondly, it also requires no simplifying assumptions
about noise in order to estimate clean speech PSDs. Finally, since it
only employs beamformer outputs, we do not depend on averaging
across microphone pairs to estimate filter parameters. Consequently,
there is no direct dependence of filter performance on array size.

Speech recognition experiments on in-car stereo recordings
show that the proposed method consistently outperforms other forms
of postfiltering by a significant margin.

The rest of this paper is arranged as follows: In Section 2 we
briefly review conventional beamforming and postfiltering methods.
In Section 3 we explain our proposed compositional postfiltering
method in detail. In Section 4 we present our experimental results
and in Section 5 we present our conclusions.

2. BEAMFORMING AND POSTFILTERING

In distant-speech recognition scenarios, the effect of interfering
noise can be particularly deleterious. Microphone array techniques
are predicated on the idea that in these situations, the audio signals
from the desired target speaker emanate from a specific location in
space. Interfering noises are typically unlikely to arrive from exactly
the same location. If the audio signals are captured using an array
of microphones and appropriately combined, the captured audio can
be spatially filtered to selectively enhance signals from the specific
direction of the target source. The processing typically comprises
two components: beamforming, to perform the spatial filtering, and
postfiltering, to further suppress residual noise after beamforming.

2.1. Beamforming

Beamforming is the process of combining the signals captured by
multiple microphones such that signals arriving from desired target
locations in space are enhanced, while interferences from other loca-
tions are suppressed. This is usually implemented as a multi-channel
filter. Let x;[t] represent the signals captured by i-th microphone,
and X;[t, f] its f-th frequency component at time ¢. Let X[t f]

be a vector composed by stacking X1[t, f], X2[t, f],---. The f-th
frequency component Y'[t, f] of the array output y|[t] is obtained as
Y[t f] = w()"X[t, f] M



where w( f) is a vector of frequency-dependent array weights. The
superscript H represents the Hermitian operator. The spatial re-
sponse of the microphone array can be controlled by manipulating
w(f). We will henceforth drop the explicit notation of frequency f
for brevity; it is nonetheless implicit everywhere.

Most commonly, w is computed to achieve minimum variance
distortionless response (MVDR), which explicitly requires that sig-
nals from the target source are not distorted, while the variance of in-
terfering signals is minimized. If we represent the total interference
arriving at the i-th microphone as n;[t], the cross-spectral density
between n;[t] and n;[t] as @y, , and the coherence between n;[t]
and n;[t] as 'y,
iy = (I)q)n”;
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and define I' as the noise cross-coherence matrix with elements I';;,
MVDR beamformers are generically given by
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where v is a array manifold vector that accounts for phase differ-
ences in the signals from the target source that are captured by the
individual microphones, due to differences in the length of the direct
acoustic path from the target source. o1 is a diagonal-loading factor
often introduced for stability.

The matrix I' is unknown and usually difficult to estimate, so
simplifying assumptions are often made. If we assume that the inter-
ferences at the various microphones are zero-mean and uncorrelated
with one another, then I' = I, the identity matrix, and we obtain
the well-known “delay-and-sum” beamformer. If the interference is
assumed to be from diffuse, isotropic noise, then I';; is a sinc func-
tion of the distance between the i-th and j-th microphones, and the
resulting beamformer is a superdirective beamformer.

When the noise cannot be assumed to be merely uncorrelated
or isotropic, then additional processing is required. This is usu-
ally implemented as a “Generalized Sidelobe Canceller” (GSC) [5,
§13], such as the one shown within the rectangular box in Figure 1.
Here, in the upper branch the array signals are processed using a
“fixed” distortionless-response beamformer such as the delay-and-
sum or superdirective beamformers, which do not require an explicit
noise estimate. In the lower channel, signals from the target source
are blocked by a blocking matrix B such that only the interfering
signals are allowed through. For M microphones, the blocking ma-
trix can generate up to M — 1 such interference-only signals. These
are adaptively filtered, combined, and subtracted out from the sig-
nal in the upper branch. The adaptive array filter w, is optimized
for desired characteristics of the overall output Y'[¢, f] of the beam-
former. Optimization criteria include minimum variance of beam-
former’s outputs [5, §13.3.1], the kurtosis of the output signal [6]
and its negentropy [7].

In this paper, we specifically employ a super-directive
maximum-negentropy (MNES) GSC [7] shown in Figure 1, as this
has been previously demonstrated to outperform other forms of
beamforming for speech signals, particularly when used to enhance
speech for recognition. In our experiment, we set o = 0.01 in Equa-
tion 2 for the superdirective beamformer in the upper channel. The
adaptive filter parameters in the lower channel of the GSC are opti-
mized to maximize the negentropy of the output of the beamformer.
As demonstrated in [7], such a beamformer can suppress interference
signals as well as reverberation effects without the signal cancella-
tion encountered in traditional MVDR beamforming.
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Fig. 1. Block chart of super-directive maximum negentropy beam-
former with postfiltering.

2.2. Postfiltering

Even after the spatial filtering performed by the beamformer, the
output of the array typically contains significant residual noise. A
postfilter must be applied to the beamformer output to reduce the
noise. The postfilter usually takes the form of a Wiener filter:
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The denominator of Equation 3 is the PSD of the signal to be filtered
and is easily obtained. The more difficult term is the numerator, @,
which represents the PSD of the desired target signal s[t].

It can be shown [1] that if the target signal s[t] is captured iden-
ticaly at all microphones, i.e. that x;[t] = s[t] + n;[t] (assuming
all z;[¢] are aligned appropriately), then the power spectral density
of the clean signal can be estimated from the signals captured by the
i-th and j-th microphones as:

Pii — R{Pu,0;} — 3 (Paya; + Poje;) R{Ti;} “

where R is the real operator that extracts the real component of a
complex argument. However, once again, in order to estimate this
term I';; must be known, a difficult requirement. Once again, there-
fore, it is obtained based on assumptions about the noises at the in-
dividual microphones. The Zelinski postfilter [2] assumes that the
noises at the different microphones have the same power, but are in-
coherent, i.e. that I' = I. The postfilter proposed by McCowan [1]
assumes that the noise is diffuse and isotropic, which, as we saw ear-
lier, implies that I';; is a sinc function of the distance between the
i-th and j-th microphones. Other such assumptions result in other
postfilter formulations [8].

We note that these assumptions about the noise are identical to
those made by various beamforming algorithms. The Zelinksi post-
filter makes the same assumption as the delay-and-sum beamformer.
The assumption of the isotropic noise field in [1] is also made by the
superdirective beamformer. In effect, these postfilters can only deal
with the kinds of noises that fixed beamformers (that do not require
explicit knowledge of the noise) can already deal with. Moreover,
unlike the beamformers which have a distortionless response con-
straint, the postfilter, having no such constraint can in fact degrade
the output of the beamformer when the assumptions are inaccurate.

A second issue that arises is that of the robustness of the esti-
mates of the numerator and denominator terms in Eq. 3. In order
to derive robust estimates it is customary to average the estimates
across all microphones and microphone pairs. For the estimates to
be sufficiently accurate, a sufficient number of microphones are re-
quired. For small arrays, such as those that employ only two micro-
phones, the estimates are often noisy and result in poor postfiltering.



3. A COMPOSITIONAL POSTFILTER

The compositional postfilter proposed in this paper takes a different
approach. Instead of attempting to derive a postfilter from knowl-
edge (or estimates) of clean-speech and noisy-speech parameters as
in Equation 3, it treats postfiltering as a semi-supervised signal sep-
aration problem to be performed from estimated characterizations of
noise and the noisy speech.

Before we explain exactly where the initial noise and noisy-
speech estimates come from, we first briefly describe the technique
employed for separation. We follow the mechanism based on proba-
bilistic latent component analysis (PLCA) described in [4]; however,
we must modify it in order to account for the fact that clean speech
parameters are unknown.

3.1. Semi-supervised source separation

Consider a problem where we are given examples of a mixed signal
y[t] = s[t] + n[t] along with examples of one of the two compo-
nents of the mixture, n[t]. The goal is to estimate s[t] from y[t].
Representing the short-time Fourier transforms of y(t], s[t] and n[t]
as Y[t, f], S[t, f] and Nt, f] respectively, we have the approximate
relation |Y'[t, f]| = |S[t, f]| + |NT¢t, f]|. The problem can then be
restated as determining S[¢, f] from Y'[¢, f].

The PLCA model treats each magnitude spectral vector S[t] =
[1S[t, f]| V] as a histogram of draws from a mixture-multinomial

distribution:
2R

IS[t, f1] ~

The component multinomials Ps(f|z) are assumed to be the compo-
sitional units that are common to all spectral vectors from s[t], while
the mixture weights P;° (z) represent the manner in which the units
must be combined to compose the ¢-th spectral vector S[t]. Simi-
larly, N[t] = [ |Nt, f]| Vf ] is assumed to be a histogram of draws
from a mixture-multinomial distribution: N[t, f] ~ Pn(t, f) =
>, PN(2)Pn(f|2), where Pn(f|z) are the compositional units
that compose all spectral vectors of n[t] and mixture weights P;Y (z)
represent the manner in which these units must be combined to com-
pose the ¢-th spectral vector N[t].

Each spectral vector Y[t] = [ |Y[t, f]| Vf ] of the mixed signal
y[t] can now directly be characterized as a histogram drawn from a
distribution |Y'[t, f]| ~ Py (¢, f), where

Py (t, f Z PS( Z PN (

and P;(S) and P;(N) represent the relative proportions of S[t] and
NTt] in Y[¢].

Given the component multinomials Ps(f|z) and Pn(f|z)
and the magnitude spectrogram |Y'[¢, f]| of the mixed signal,
Py(8),P:(N),{P? () Vz} and {P} (z) Vz} can all be estimated
using the EM algorithm [9]. Thereafter, S(¢, f) is estimated using
the Wiener filter formulation:

Ps(t, f) = z)Ps(fl|z)

2)Ps(f|2)+Pu(N z)Pn(f|2)

M
Py(t, f)

The estimate for the separated signal s[t] can then be obtained by
computing the inverse short-time Fourier transform of S [t, f]. We
note that this formulation is very successful at separating mixed sig-
nals in a variety of scenarios [4, 9, 10].

Slt, fl=YI[t. fl®

The problem, of course, is that of accurately learning the com-
ponent multinomials Ps(f|z) Vz and Py (f|z) Vz for s[t] and n|t].
We assume that we have “training” examples of n[t] from which in-
stances of N|[¢t, f] can be computed. Pn (f|z) Vz can be estimated
from training instances of | N[t, f]| using the EM algorithm [9]. In
practice, it is found to be effective to just derive them by normalizing
randomly drawn magnitude spectral vectors from the signal [10].

In our setting we do not have exemplars of s[t] to learn Ps(f|z),
however. These must be learned from the magnitude spectro-
gram of the mixed signal, |Y[t, f]| V¢, f itself. This can be per-
formed through the following iterative update rule. The superscript
k represents the iteration. Note that all terms, including Ps(f|z),
Py(S),P:(N),PZ(2), PY (z) and therefore Py (t, f) are estimated

iteratively:
S,k
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where C**! is a normalization constant. ¢ is an update factor that
controls the rate of divergence of the learned Pg(f|z) terms from
their initial values. For our setup, low « values are preferred.

3.2. The compositional postfilter

We now specify the design of the actual postfilter using the sepa-
ration approach described previously. We assume that in the above
discussion, y[t] is the output of the GSC beamformer, which carries
residual noise. n[t] is the noise in y[t] and s[t] is the desired signal.

The mixed signal y[t] is available from the beamformer output.
However, n[t] must be separately obtained. We employ a variant
of the null-steering beamformer [11, §3] to estimate noise. Our im-
plementation of the null-steering beamformer “scans” the recording
environment to identify the region other than the target location from
which the maximum signal energy is captured, while simultaneously
also ensuring that signals from the target location are completely
nulled out. This ‘null-beamformer” is shown by the lower channel
outside the rectangle in Figure 1. In reality, although we attempt to
find the most energetic interference, the output of this channel com-
bines all interfering noises, with the only guarantee that it does not
contain the target signal.

Given y[t] and the signal n[t] from the null-steered beamformer,
we can now apply the semi-supervised separation procedure of Sec-
tion 3.1. The current implementation of our post-filter is as a
batch-processing module. The entire recording n[t] correspond-
ing to any ylt] is used to learn the noise multinomials, Py (f|z).
The speech multinomials Ps(f|z) and the time-dependent mixture
weights P;(S), P2 (z), P.(N) and P} () are all learned from y[t].

Finally, a fime-varying postfilter H:(f) is computed as:

_ P(S)Ps(t. f)

H(f) Pt f)

(6)

4. EXPERIMENTAL RESULTS

The proposed method was tested on data recorded via a two-
microphone array in a car under eight different operating conditions
that were some combination of the following states: engine running
in stationary state (Idle), moving on the highway at speeds of 35
mph and 65 mph, with the fan on (Fan), turning signal on (Turn) and
passenger-side window open (Wind). The recording setup consisted



Baselines Post-Filtering methods
State Close- Farfield MNES | Leukim | McCowan | Zelinski | Comp. PF | Comp. PF
talking | Channel 2 | woPF Iterated
Idle 133 12.3 11.4 16.2 133 12.7 11.6 12.1
35 mph 11.5 159 12.1 22.0 132 135 10.8 12.2
35 mph, Fan 11.8 27.3 20.2 32.7 21.8 22.0 20.1 18.8
35 mph, Turn 15.8 13.7 12.7 22.0 17.3 159 12.2 13.7
35 mph, Wind 13.8 65.9 65.9 77.6 67.9 58.4 64.8 69.8
65 mph 14.8 343 28.4 49.7 33.6 36.3 28.0 27.6
65 mph, Fan 11.5 31.6 21.9 35.0 21.9 21.7 21.7 21.5
65 mph, Wind 23.5 68.6 46.7 63.4 49.9 50.6 45.6 43.9

Table 1. A comparison of different postfiltering methods. The table shows word error rates (in %) for recognition performed with the same

set of acoustic and language models across all methods tested.

of two microphones placed 3.8 cm apart, mounted on the passenger-
side sun shield. The speaker was seated in the front passenger seat,
broadside to the microphone array. The distance of the speaker to the
microphone array was approximately 25 cm. The speaker addition-
ally wore a headset mounted (close-talking) microphone. All three
channels were digitized at a sampling rate of 48 kHz. Speech was
recorded by multiple speakers on the same setup. Each speaker read
out sentences from the Wall-Street Journal-0 (WSJO) corpus. The
test data consisted of 1000 utterances from the data thus recorded.

The CMU Sphinx-3 ASR system was used for speech recogni-
tion. Acoustic models were trained on the WSJ1 corpus, and the
language model was trained using the WSJ1 transcriptions, with an
extended 27,000 word vocabulary. The baseline acoustic models
consisted of 8 Gaussian/state, 3-state HMMSs with 6000 tied states.
The acoustic models were trained on data containing digitally added
noise of various types (recorded from different car states in different
car types) at various SNRs ranging from -20 to 20 dB. It was found
that these corrupted data resulted in the best performance in general
for the in-car recordings used for this experiment.

The beamforming method used was the super-directive maxi-
mum negentropy (MNES) beamformer [7] in all cases. Table 1
shows the WER % obtained under different conditions: close-talking
recordings, recordings from a single distant microphone, beamform-
ing without postfiltering, three well-known postfiltering algorithms
(Zelinski [2], McCowan [1] and Leukim [8]) and with the proposed
compositional postfilter. For the compositional postfiltering we used
maxz (3000, no spectral vectors in utt.) multinomial bases for the
clean speech, initialized on an utterance-by-utterance basis by ran-
dom selection from the magnitude spectral vectors obtained from
the baseline MNES beamformed output. Correspondingly, the same
number of multinomial noise bases were obtained on an utterance-
by-utterance basis from the output of the null-steering beamformer,
using the exemplar-based mechanism of [10]. A natural question is
whether an iterative application of the compositional postfilter would
result in further improvements, since the postfiltered signal still con-
tains residual noise. This is not the case, as we see in Table 1.

5. CONCLUSIONS

The proposed postfiltering clearly outperforms other postfilters. The
proposed compositional postfilter has two very desirable proper-
ties: it is adaptive (bases are different by design on a utterance-by-
utterance basis), and is completely unsupervised. Unlike other post-
filtering mechanisms that attempt to eliminate noise, thereby also
eliminating some useful components of speech, the proposed method
tends to be conservative, actively preserving speech while suppress-

ing the noise. This tends to preserve more information in speech at
the cost of keeping a little more noise than conventional methods.
This reversal of balance pays off in lower speech recognition error
rates. It must be noted that the compositional models used in this
work are quite basic, and can be developed further in many ways.
Future work will involve developing more intelligent sparsity con-
straints in the use of overcomplete bases representations, and better
update rules for estimating the weights.
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