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ABSTRACT

The human voice can be disguised in many ways. The purpose of
disguise could either be to impersonate another person, or to con-
ceal the identity of the original speaker, or both. On the other hand,
the goal of any biometric analysis on disguised voices could also be
twofold: either to find out if the originator of the disguised voice is a
given speaker, or to know how a speaker’s voice can be manipulated
so that the extent and type of disguise that the speaker can perform
can be guessed a-priori. Any analysis toward the former goal must
rely on the knowledge of what characteristics of a person’s voice are
least affected or unaffected by attempted disguise. Analysis towards
the latter goal must use the knowledge of what sounds are typically
most amenable to voluntary variation by the speaker, so that the ex-
tent to which given speakers can successfully disguise their voice can
be estimated. Our paper attempts to establish a simple methodology
for analysis of voice for both goals. We study the voice imperson-
ations performed by an expert mimic, focusing specifically on for-
mants and formant-related measurements, to find out the extent and
type of formant manipulations that are performed by the expert at the
level of individual phonemes. Expert mimicry is an extreme form of
attempted disguise. Our study is presented with the expectation that
non-expert attempts at voice disguise by mimicry will fall within the
gold standard of manipulation patterns set by an expert mimic, and
that it is therefore useful to establish this gold standard.

Index Terms— Voice disguise, Mimicry, Impersonation, Voice
biometrics, Voice forensics, Formant analysis

1. INTRODUCTION

While the human vocal tract is restricted in its ability to produce
the larger fraction of non-speech sounds encountered in the real
world, the fact that one human being can successfully impersonate
another’s voice is not contested. Voice mimicry is in fact an es-
tablished subarea of the performing arts, and is taught as a skill in
many schools of Drama and performing arts across the world. Until
voice-only communications became commonplace, voice imperson-
ation was largely of value only for entertainment purposes. In the
current day, however, nefarious motives have begun to be associated
with this. There are many situations in which a person may try to
impersonate another. When communicating content of a misleading
nature, a person may deliberately try to sound like another person.
Successful impersonation is of special benefit to people who try to
bypass or confuse voice biometric systems, such as voice-password
(or voice-fingerprint) based applications. Hoax callers who attempt
to mobilize emergency and security services for malicious purposes
often attempt to disguise their voices by impersonation (e.g. a man
trying to sound like another, or like a woman). There are increas-
ing incidences of swatting – wherein people call law enforcement
agencies with false reports of dangerous activities at a location (e.g.

report a neighbor concocting amphetamines in their basement or
holding an illegal dog fight at their location). Swatting can have
tragic and disastrous consequences [1]. It has in fact become a
serious problem for law enforcement agencies. In these, and many
other types of ill-intentioned voice communications, the use of voice
impersonation is commonly observed.

At the outset we note that impersonation in this context need not
always be of a known (living or dead) person’s voice. Impersonation
may often merely be that of a hypothetical person’s voice to convey
the impression that the speaker is not the person who is the real orig-
inator of the voice. Impersonation is also the most misleading kind
of voice disguise. When voice is disguised by physical masking [2]
or other methods that “scramble” voice resulting in unnatural sound-
ing voice with intelligible content [3], it is often easy to detect it as a
disguised voice. This information alone could be used to block cer-
tain categories of activities such as socially harmful communication,
influence decisions to respond (or not) to hoax calls, etc. When the
disguise is in the form of impersonation, such information may not
be easy to derive. It becomes necessary to perform a finer analysis of
voice to confirm or rule out the possibility of disguise. Furthermore,
if the perpetrator habitually engages in voice disguise using multiple
impersonations to further thwart any identification, it may be neces-
sary to find ways to identify the common originator of all or a subset
of such voice samples at hand.

To achieve these goals, it is necessary to understand clearly what
aspects of speech are variant or invariant during impersonation. The
goal of this paper is more directed towards deducing invariant units
of sounds during mimicry, so that these can be reliably used for fur-
ther forensic investigations to uncover the identity of the speaker.
We perform an extremely controlled study of formants and formant-
related measurements, namely formant bandwidths, dispersion and
spacings, of impersonated voices by a professional mimic who has
been publicly acclaimed to be one of the best impersonators in the
world today. Note that while formants are clearly not the only pa-
rameters that are active in any successful or attempted imperson-
ation, and the mimic often makes heavy use of facial expressions,
speaking styles and gestures, they are nevertheless extremely signif-
icant in defining and preserving intelligibility and discriminability of
individual speech sounds. They are also important in impersonations
that are entirely done within voice-only communications.

1.1. Formants and their relation to body parameters

We use formants for deducing sounds that are invariant to imper-
sonation, rather than the more easily derived voice fundamental fre-
quency, often referred to as F0, or pitch. The reason is that pitch
does not appear to contain information that could be useful in track-
ing invariant characteristics of the same speaker (and therefore their
speech) in different situations. This is evidenced by the fact that
strong relationships of F0 to speaker characteristics have never been
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found, despite the fact that more studies have been performed with
F0 than with formants. An interesting example is that of body size.
Historically, as far back as 1871 [4], it was believed that pitch relates
to body size. This view was still controversial after a century, where
there are contradictory studies reporting F0 to be correlated to body
size [5], and not so [6, 7, 8, 9].

Formants are related to F0, but only weakly so. Formants are the
resonant frequencies of the vocal tract that are activated in response
to the vocal tract configuration, and also to any residual voicing or
excitation of the vocal tract. While F0 can remain constant on the
average through a specific set of sounds, formants differ for differ-
ent phonemes, since the vocal tract shape is different while enunci-
ating each phoneme. Formants are important in the discrimination
of different sounds by the human ear. Pitch is not important in this
respect. Formants and formant-related measurements have also been
consistently found to correlate to body parameters in many studies
with significantly more success. Studies associate them positively
to body size [10], height [11], vocal tract shape [12], age [13] etc.
Other studies have reported their correlation to body size in humans
by association to our evolutionary relatives, e.g. the study in [6] was
the first to present strong evidence that formant dispersion, defined
as the mean difference between successive formant frequencies, cor-
related strongly with vocal tract length and body size. Later studies
have confirmed this.

These, and other similar studies, indicate that formant measure-
ments in disguised or impersonated voices could present an interest-
ing and potentially valuable study case. In a collection of imperson-
ations by the same speaker, neither the absolute vocal tract length
nor the body parameters change, especially if the impersonations are
done within the same short time duration (minutes or even hours). If
the impersonator is successful at giving the impression of a different
person’s body parameters (implicitly), it could be interesting to find
out if there is any subset of sounds nevertheless that could still lead
to the identity of the impersonator. Our study is precisely directed
towards finding such a subset.

The rest of this paper is organized as follows. In Section 2 we
explain formant and formant-related measurements and discuss their
role in voice disguise. In Section 3 we describe the key method-
ologies used to derive the formants, and the statistical measures we
propose to use in this study. In Section 4 we describe our experi-
mental setup and also present our results. In Section 5 we present
our conclusions.

2. FORMANT CHARACTERIZATIONS AND MIMICRY

2.1. Formants

Formants are frequencies at which the spectral energy peaks in the
speech signal. The human vocal tract may be viewed as an acoustic
tube. In the act of producing different speech sounds, the speaker
modifies the configuration of the vocal tract to result in partially sep-
arated segments or cavities of different lengths. Formants are pro-
duced by the resonances of these chambers.

Formants generally appear as peaks in spectrographic displays
of the speech signal. The top panel in Figure 1 shows the spectro-
gram for the word “DARK”. The spectrogram is seen to exhibit sev-
eral distinct horizontal bands of energy. Each of these bands is a for-
mant. The formants are numbered by convention – the formant with
the lowest frequency is called F1, the second lowest frequency for-
mant is F2, the next is F3 and so on. Up to five formants (F1−F5)
are typically observable in the spectrogram. While resonant frequen-
cies corresponding to formants F6 and higher do exist, they are gen-

erally hard to discern.
Formants, being the primary characteristic of the sounds pro-

duced by any given configuration of the vocal tract, are key to dis-
ambiguating phonemes. Typically, the first three formants F1− F3
are sufficient to disambiguate vowel sounds. Other sounds too have
formant-arrangement signatures. For example the liquid /l/ generally
exhibits a formant at about 1500Hz. Nasal consonants often have
their third formant canceled out by anti-resonances resulting from
the opening of the nasal passageway. The liquid /r/ is distinguished
by a third formant that dips below 2000Hz. Formants are often not
clearly discernible in fricative sounds such as /ch/, /jh/, /hh/ etc. due
to the noisy nature of these sounds; they are nevertheless present.
Even stop sounds such as /t/, /p/, /k/ etc., which are associated with
a complete closure of the vocal tract and consequent cessation of en-
ergy in the output signal, are nevertheless produced by vocal tract
configurations with resonances and often have observable formant
frequencies. The bottom panel in Figure 1 shows the spectrogram of
the word “TOOTHPASTE” spoken by a young female. We observe
that formants are discernible for almost all phonemes, regardless of
whether they are voiced or not.

Fig. 1. Top: Spectrogram of the word “DARK” spoken by a 52 year
old male. The formants F1-F5 are clearly observed, as are their band-
widths. Bottom: Spectrogram of the word TOOTHPASTE showing
the variation of formants between phonemes. The symbol α marks
the voice onset time. Note that even the unvoiced phonemes such as
/t/, /p/ and /s/ have formants since the vocal tract continues to res-
onate through their production period. This is not the case for the
voice pitch, which manifests only for voiced sounds, i.e. when the
vocal cords vibrate.

While the formant frequencies are thus characteristic of the un-
derlying phoneme, they are also characteristic of the vocal tract it-
self; in fact vocal tract length is known to be the second largest con-
tributor to formant frequency variation after phoneme identity [14].
Longer vocal tracts may be expected to lower resonances and hence
lower the formants. In principle, for the open sound /ah/, which is
produced by a relaxed and fully open vocal tract, a loss-less tube
model gives us an estimate of the vocal tract length derived from



the nth formant as L = Fn
2n−1

. Under more realistic assumptions
formulaic estimators relating measured formant frequency values to
vocal tract length can nevertheless be found [15].

Not surprisingly, therefore, formant frequencies are also charac-
teristic of the speaker, since the underlying physical system, namely
the vocal tract, is an invariant characteristic of the speaker. From our
perspective, it is this characteristic that we wish to key in on when
characterizing speech mimicry, since the mimic’s vocal tract is an in-
herent characteristic and its effect cannot entirely be eliminated from
his/her speech.

2.2. Formant bandwidth

The spectral energy that peaks at formant frequencies also rolls off
as the frequency moves away from the formant. The formant band-
width is defined as the spread of frequencies around the formant
within which the energy remains within 3dB of the formant energy.
Figure 1 also shows the bandwidths of the formants.

Formant bandwidth generally has a smaller effect on the iden-
tity of the sound, but is nevertheless related to formant frequency:
higher formants have greater bandwidths in general. However for-
mant bandwidth is also dependent on vocal tract composition, such
as the elasticity of the walls, energy dissipation through the glottis
etc., in addition to other configuration-related characteristics [16].

Not surprisingly then, formant bandwidth too has speaker-
specific characteristics. In particular, damping effects due to the
nature of the tissue of the vocal tract, and damping due to energy
dissipation from the glottis and nasal pathways are related to the size
and coupling of these passages with the main vocal cavity. From our
perspective, these effects may be expected to manifest directly in a
mimic’s voice in a manner which he/she cannot entirely control.

2.3. Formant Q

A vocal tract configuration that generates a specific formant may be
viewed as a filter with a particular resonant frequency. The Q-factor
of any filter is defined as the ratio of the peak frequency of the filter
to its bandwidth. In the case of formants, the formant Q is the ratio
of the formant frequency to the formant bandwidth.

There is an inherent relationship between the formant frequency
and the formant bandwidth. In general, as the formant frequency in-
creases, so will its bandwidth. However, the actual Q of any formant
depends not only on the frequency of the formant, but also on the
frequency-dependent characteristics of the vocal tract of the speaker.
Once again, given the invariance of the vocal tract of the speaker, one
may expect un-maskable speaker-specific characteristics to manifest
in formant Qs of mimicked speech.

2.4. Formant Dispersion

Formant dispersion is defined as the average spacing between for-
mants. Formant dispersion, being dependent only on the spacing
between formants and not on the absolute position of the formants
themselves, has been suggested as being more characteristic of the
speaker’s vocal tract length than the formant positions themselves
[6]. Once again, as in the other measurements, this translates to
speaker dependence of formant dispersion. Consequently, we may
expect the distribution of formant dispersion values to have speaker-
specific characteristics that a mimic may not have complete control
over.

We note here that the common definition of formant dispersion,
given by D =

(F2−F1)+(F3−F2)+···+(Fn−Fn−1)

n−1
, simply collapses

to Fn−F1
n−1

, i.e. the average distance between formants, which loses
the distinction between the individual spacings. In order to better
reflect the effect of individual formant spacings, we redefine disper-
sion in this paper as the geometric mean of the formant spacings, i.e.
D = n−1

√∏
i Fi − Fi−1.

2.5. Measuring Formant Features

In general, the estimation of formant frequencies and bandwidths
from a speech signal is a challenging task even when the speech
recording is clean, and particularly so when it is noisy. A number of
algorithms have been proposed in the literature for this purpose. The
most common approach is to analyze segments of a speech signal
using an auto-regressive (AR) model, and to track the positions and
bandwidths of the poles in the model [17].

In this paper we have employed the Burg algorithm for AR anal-
ysis as implemented in PRAAT [18], a popular open-source tool that
is probably the most popular tool for these purposes. The speech sig-
nal is segmented into analysis “frames” of 25ms each, where adja-
cent frames overlap by 15ms, leading to an analysis frame rate of 100
frames per second. Formant measurements are obtained from each
analysis frame. Measurements from adjacent frames are smoothed
in order to minimize the occurrence of random variations and out-
liers in the measurements. Q- and dispersion values were derived
from the computed formant and formant-bandwidth values.

3. STATISTICAL ANALYSIS OF IMPERSONATION

There is, in general, a paucity of studies on what makes a speech
mimic successful. Much of the literature on speech mimicry deals
with unintended mimicry due to various convergence effects in con-
versation [19], or in the context of voice spoofing to beat speaker
verification or identification systems [20, 21]. Relatively less infor-
mation is available from studies of professional mimics.

However, a few studies are, indeed available. Eriksson [22] re-
ports that professional mimics are generally good at mimicking tim-
ing and prosodic cues of the target, as one might expect intuitively,
and further confirmed in [23], but less so at mimicking a target’s for-
mants. Zetterholm [24] reports that mimics also capture the intona-
tion and articulation of the target. This study reports that the mimic
varies his formants to match the target, and while he may not actu-
ally achieve the target’s formants, he does succeed in making them
significantly different from his own. However, the study only reports
aggregate statistics, and it is not at all clear that this effect will persist
for every phoneme. Intuitively, one may expect that such change is
more likely in vowels, where formant frequencies are well perceived
and recognized, and less so in consonants, fricatives, and diphthon-
gized sounds where the precise location of instantaneous formant
frequency is less critical to the recognition of the sound. Ashour and
Gath [25] show that mimics also track the pitch of the target speaker,
a hypothesis also confirmed by Majewski [26]. They also study a
small number of vowel triplets that appears to confirm our hypothe-
sis that mimics will vary their formants towards that of the target in
vowels, although they may not actually achieve the target’s values.

We accept the hypothesis that mimics do a very good job of
capturing their target’s timing, articulation and pitch cues – this is not
only evident from the literature, but also from even a casual perusal
of performances of mimicry uploaded to YouTube. We also accept
the hypothesis that they vary their formants, although they may not
necessarily achieve the actual formants of their targets.

Instead, we focus on their failures – the phonemes they fail to
vary, and yet nevertheless manage to successfully imitate the tar-



get. We hypothesize that the mimic does not actually modify all
phonemes – since the intent is to project the vocal image of the target
speaker, or perhaps even a caricature of the target, this does not re-
quire perfect mimicry or even modification of all phonemes. Rather,
there may be a group of one or more phonemes that the mimic does
not, or possibly cannot vary significantly during mimicry, and that
the characteristics of formants for these phonemes retain the statisti-
cal characteristics of the speaker himself.

3.1. Statistical tests for the similarity of phonemes

We base our analyses on statistical tests conducted on formant mea-
surements of speech from the mimic. We present the details of the
data later in Section 4; for now we only outline the testing procedure.

Our tests are by phoneme. The objective is to establish, statisti-
cally, if it can be stated with high confidence that the mimic did vary
the formants of his speech when pronouncing the phoneme when
imitating different targets.

We obtain several instances of each phoneme when the mimic is
imitating each of several target speakers. We obtain formant trajec-
tories for each phoneme. Since formant trajectories are constantly
changing, and we wish to evaluate, as closely as possible, the canon-
ical expression of the phoneme by the mimic, we only use the for-
mants from the central third of each phoneme segment. In general,
not all formants can be measured in any segment; however, where
formants can be estimated, F1−F3 can almost always be measured.
F4 and F5 are more difficult to detect and track. Our analysis fo-
cuses on F1 − F3, using F4 and F5 where available, and treating
them as missing at other times.

We treat the analysis as a hypothesis testing problem. Our null
hypothesis is that formant measurements from all instances of a
phoneme, obtained when the mimic imitates different speakers, are
drawn from the same distribution. The alternate hypothesis is that
they have different distributions. The statistical test attempts to es-
tablish a two-sided probability that the observed distributions of the
measurement could have been obtained from a common distribution.
If this probability is high, the alternate hypothesis must be discarded.

Our measures are generally multivariate – since we will be con-
sidering groups of measured variables at a time. Moreover, within
any instance of a phoneme we obtain multiple measurements, one
from each analysis frame of the signal. These measurements are
correlated, since formant variation is generally not rapid and formant
trajectories are smooth. Additional smoothness is also imposed by
the smoothing of formant trajectories during measurement (although
in practice we find that smoothing is infrequently invoked and does
not affect our analyses significantly).

Our statistical analysis must therefore be able to handle repeated
multi-variate measurements. We use repeated measures ANOVA,
which we will refer to as R-ANOVA, for this purpose[27]. Repeated
measures ANOVA is a variant of multi-variate ANOVA that accounts
for correlations between temporally adjacent measurements by sub-
tracting out the effect of correlations between the adjacent measure-
ments when computing within-class variability. We refer the reader
to [28] for a detailed explanation of the test.

ANOVA and its variants are, in general, not ideally candidates
for this test. ANOVA implicitly assumes a Gaussian distribution for
the groups and further that the groups are homoskedastic. However,
it is known to be robust to variations in class variance, and is found
to be widely applicable even in situations where the theoretical re-
quirements of the test do not apply exactly. In our situation, our tests
incorporate many groups, and provided we arrange our variables ap-
propriately for the test to be applicable, the test remains sufficiently

informative for our purposes, although the exact P -values (i.e, the
probability that the measurements for all speakers were drawn from
a common distribution) provided by the test may not be accurate.

4. EXPERIMENTS AND RESULTS

Our study was performed on recordings of impersonations by Jim
Meskimen, a renowned voice mimic. The data included imperson-
ations of 50 different celebrities (actors, scientists, famous politi-
cal figures etc.), rendered by Jim Meskimen at the same time while
reading text from Shakespeare. The audio recordings were 16kHz
mono recordings. The total speech used was a little over 0.5 hours.
While the amount of data for each of these impersonations was lim-
ited to less than a minute each, and it would be hard to find the same
words across the impersonations, this amount of data is neverthe-
less sufficient to obtain multiple examples of each phoneme from
each impersonation. Formant readings were then obtained at 0.01
second intervals within each phoneme, resulting in a total of about
190,000 readings spread over 42 phonemes, excluding silences and
other non-speech sounds.

The reason for selecting this particular set of impersonations is
that the voice artist renders these impersonations in a rapid sequence,
in one sitting, while reading a piece from some literature so that
the subject and theme are constant. This is an important factor in
normalizing sentiment, since sentiment (and the expression thereof)
can cause significant changes in the the underlying formant patters.
Some examples of renderings in our collected database include EG6
[29], Celebrity impressions Alphabet [30], Don’t do drugs do im-
pressions [31], What is in a human voice (with music removed) [32],
Sonnet 130 by William Shakespeare [33], T’was the night before
Christmas from Saint Nicholas by Clement Clark Moore [34] etc.
Note that in all of these, the artist speaks in his own voice as well,
usually at the beginning and the end of each performance. Our anal-
ysis used the artist’s voice from these segments as reference (the
advantages of doing so are many, including the normalization of
sentiment and mood). In some recordings, other people spoke as
well, e.g. the host of the show introducing the artist. These non-
impersonations were removed from the analysis.
Phoneme segmentation for accurate analysis: The database was
transcribed manually to obtain accurate transcriptions with accurate
speech and non-speech events, and disfluencies clearly marked. The
CMU Sphinx-3 automatic speech recognition system [35], trained
with approximately 5000 hours of clean speech for this experi-
ment, was then adapted to the recordings in a supervised fashion
to obtain the best possible acoustic segmentation for the phonemes.
The phoneme boundaries that were automatically obtained by the
speech recognition system were thereafter manually spot-checked
and found to be extremely accurate.
Choosing successful mimicry: For each of the mimicry targets we
attempted to establish the success of the mimicry. To do so, we ran
the following test, comparing actual spoken utterances by the target
of the mimicry to sentences spoken by the mimic: we played a ran-
domly selected pair of sentences to listeners. Each of the sentences
was spoken either by the mimic (attempting to sound like the target),
or by the target himself/herself. The listener was asked to determine
if the two sentences were spoken by the same person or not. For
each mimicry target we ran the above test using 18 subjects. The
null hypothesis was that the listeners would be unable to distinguish
between the mimic and the target. The alternate hypothesis was that
they could. A two-sided test was conducted to test the hypothesis.
If the null hypothesis could not be rejected at a generous confidence
level of p = 0.20, the mimicry was deemed to be perfect. Other-



wise, the attempt at mimicry was considered imperfect. Of all the
imitated subjects, only 8 were rejected as imperfect mimicry. The
successfully mimicked targets included a female target.

Results: Figure 2 shows the P-values for formants, formant band-
widths, Q-values and formant dispersion as defined by us in Sec-
tion 2. We note that the phonemes that are clearly unaffected by
all impersonation attempts by the artist include /jh/, /ch/ and /y/ in
all cases, and other phonemes as well. The absence of distinction
between different target-specific renditions of these phonemes could
either imply a failure on the part of the mimic to make these distinc-
tions, or that these phonemes themselves do not vary across speak-
ers. To test the latter hypothesis we evaluate the usefulness of these
phonemes in making biometric predictions. If they do provide bio-
metric information, then it can be assumed that they do in fact vary
across speakers, but the mimic was unable to replicate this variation.

We studied the predictive potential of these phonemes using the
TIMIT acoustic-phonetic corpus [36]. This corpus comprises 630
speakers representing eight major dialects of American English. The
recordings contain 16kHz sampled speech recordings of ten pho-
netically rich sentences that are read by each speaker. The cor-
pus is phonetically balanced. All phonemes are well represented
within each speaker and across the database. The biometric param-
eters of each speaker were recorded at the time of corpus collection.
From amongst these, we chose to demonstrate the usefulness of the
phonemes in question by investigating their predictive potential for
the speaker’s gender and height. As a contrast, we must also use
instances of these phonemes from the mimic’s voice to determine if
they are predictive of his gender or height, or those of the targets.
However, since all of his targets chosen were male, and we were
unaware of their heights, this test could not be run. The gender clas-
sification detected all instances as male.

In our experiment we first obtained accurate phoneme segmen-
tations for the TIMIT database using the clean speech acoustic mod-
els mentioned above, and built a Gaussian-Mixture-based gender
and height classifier individually from examples of each phoneme.
For each experiment, the training set for each phoneme comprised
all examples of the phoneme from the 462 speakers in the corpus-
designated training set. The test set comprised phonemes from 56
male and 56 female speakers selected from the corpus-designated
TIMIT test set. The results are shown for a selected set of phonemes
in Table 1. Some phonemes including /jh/, /b/, and /th/ were ex-
cluded for logistic reasons (a few speakers in the test set did not have
enough examples of these). We note from Table 1 that height estima-
tion is not as good as state-of-art but since the inference of biometric
parameters is not the focus of this paper, we believe these results are
sufficient to show the biometric potential of these phonemes.

Phoneme CH Y DH M OY P HH SH
Gender 83 92 72 80 83 69 81 88
Height 57 66 52 51 58 57 57 63

Table 1. Gender and height recognition accuracies (in rounded per-
cent figures) for some impersonation-invariant phonemes, demon-
strated on the TIMIT corpus. Height is determined in inches with a
range of +- 2 inches.

Variation of vowels in impersonations: Our study found that
all vowels were maximally varied by the impersonator. Figure 3
shows the F1−F2 and F2−F3 variations of vowels for 39 of the
best impersonated speakers.

Fig. 2. P-values for various formant measurements.

Fig. 3. Average vowel positions on the F1−F2 and F2−F3 planes
for a few impersonations. No systematic patterns are evident so far
in these variations.

5. CONCLUSIONS

We observe that expert impersonations have complex formant vari-
ations for some phonemes, and almost none for others. We present
a methodology that can be followed in a full analysis for formant
patterns in such situations. Formant variations in vowels seem to
be patternless. However, patterns could potentially be uncovered by
more complex models that possibly take into account the voice char-
acteristics of target speakers that the artist impersonates. There are
several follow-ups to this work that are clearly needed. First, the
target speakers who are impersonated must be correlated to the im-
personated ones. Second, the biometrics of the impersonator must
be matched with those generated or deduced from impersonation-
resistant phonemes to evaluate their value in biometric deductions
from disguised voices.

More generally, our works suggests that the study of mimicry to
identify mimicry- or spoofing-invariant features may be a valuable
tool for biometric analysis, particularly of disguised voices.
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