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Abstract
This paper presents a new microphone-array post-filtering

algorithm for distant speech recognition (DSR). Convention-
ally, post-filtering methods assume static noise field models,
and using this assumption, employ a Wiener filter mechanism
for estimating the noise parameters. In contrast to this, we
show how we can build the Wiener post-filter based on actual
noise observations without any noise-field assumption. The al-
gorithm is framed within a state-of-the-art beamforming tech-
nique, namely maximum negentropy (MN) beamforming with
super directivity. We investigate the effectiveness of the pro-
posed post-filter on DSR through experiments on noisy data
collected in a car under different acoustic conditions. Exper-
iments show that the new post-filtering mechanism is able to
achieve up to 20% relative reduction of word error rates (WER)
under the represented noise conditions, as compared to a sin-
gle distant microphone. In contrast, super-directive (SD) beam-
forming followed by Zelinski post-filtering achieves a relative
WER reduction of only up to 11%. Other post-filters evaluated
perform similarly in comparison to the proposed post-filter.
Index Terms: Microphone array, Post-filter, Distant speech
recognition, Automotive speech application

1. Introduction
Microphone array processing has received much attention for
distant speech recognition (DSR) [1] due to the potential to re-
lieve users from the necessity of wearing intrusive devices such
as a head-set microphone. A main advantage of the microphone
array against single channel techniques is that array processing
can use spatial information about sound sources. The spatial
directivity for a sound wave can be realized by beamforming,
which is further improved by post-filtering [2, 3, 4, 5, 6]. Sim-
mer et al. showed in [7, §3] that the optimal multi-channel fil-
ter in the sense of the minimum mean-square error (MMSE)
can be decomposed into the minimum variance distortionless
response (MVDR) beamformer followed by a single channel
Wiener post-filter.

However, since the second-order statistics of the target and
noise signals are unknown in many applications, it is diffi-
cult to realize the Wiener filter in practice. Accordingly, var-
ious methods have been developed for estimating the post-
filter [2, 3, 4, 6] [7, §3]. Among those techniques, Zelin-
ski’s algorithm [2] is one of the most popular methods. It as-
sumes that noise signals among sensors are spatially uncorre-
lated. However, such an assumption does not hold in some
situations. Accordingly, McCowan and Bourlard used a more
accurate noise field model for post-filter design. They showed
in [3] that speech recognition performance can be improved by
applying the diffuse noise field model to the post-filter. A gen-

eralized approach of those model-based post-filters was inves-
tigated by Lefkimmiatis and Maragos in terms of speech en-
hancement in [4].

In contrast to prior work, we use actual noise observa-
tions for estimating the post-filter without any assumption of
the static noise field model. In order to separate the noise sig-
nal, we first find the direction of arrival (DOA) of the noise
signal with the source localization method based on the max-
imum steering response power (SRP) [7, §8.2.1]. Then, we
construct a null-steering beamformer which places a null point
on the direction for the target signal and maintain the distortion-
less constraint for the noise direction. By doing so, we can ex-
tract the dominant spatially-correlated noise signal. Moreover,
for clean signal estimates, we use outputs of the super-directive
maximum negentropy (SD-MN) beamformer [8]. The SD-MN
beamformer is configured in the generalized sidelobe canceller
(GSC) structure [1, §13.3.7]. The quiescent vector of the SD-
MN beamformer consists of the weight of the super-directive
beamformer [7, §2]. The active weight vector is adjusted so as
to achieve the maximum negentropy of the beamformer’s out-
put subject to the distortionless constraint for the look direction.
In [8, 9], it was shown that the SD-MN beamformer is able to
suppress noise sources and reverberation effects without the sig-
nal cancellation problem encountered in conventional adaptive
beamforming.

We perform speech recognition experiments on real data
captured with a microphone array with two sensors in a car. The
effects of the post-filtering methods are investigated through a
set of the DSR experiments.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews basic formulae of beamforming and post-
filtering. In Section 2, we also describe representative post-
filtering algorithms, Zelinslki and McCowan post-filter. Sec-
tion 3 describes our post-filtering method. In Section 4, the
performance of the beamforming and post-filtering methods is
evaluated in terms of automatic speech recognition. In Sec-
tion 5, we conclude our work and describe our future plan.

2. Beamforming with post-filtering
Let us consider a situation where a desired sound wave is prop-
agating from a point to S microphones of an array in a noisy
environment. We can denote a vector consisting of the signals
observed at each sensor in the frequency domain as

X(ω, t) = [X0(ω, t), · · · , Xs(ω, t), · · · , XS−1(ω, t)]T ,

where t indicates the frame index and ω represents the angular
frequency index. We also define the array manifold vector as

v(ω, t) =
[
e−iωτ0 , · · · , e−iωτs , · · · , e−iωτS−1

]T
,
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Figure 1: Block chart of a beamformer with a post-filter.

where i indicates the imaginary unit and τs is the time delay of
arrival for each sensor s. With the desired signal F (ω, t) and
additive noise vector N(ω, t), the most popular model of the
observed signal can be formulated as

X(ω, t) = v(ω, t)F (ω, t) + N(ω, t). (1)

Notice that the observation vector contains the delayed and at-
tenuated replicas of the desired signal in a reverberant environ-
ment.

Under the assumption that the target and noise signals are
uncorrelated, Simmer et al. in [7, §3] showed that the opti-
mal minimum mean square error (MMSE) filter solution can be
factorized into the single-channel Wiener filter and the classi-
cal minimum variance distortionless response (MVDR) beam-
former. Such a solution can be expressed as

wMMSE =

[
φFF

φFF + φNN

]
Σ−1

N v

vHΣ−1
N v

, (2)

where φFF is the power spectral density (PSD) of the desired
signal, φNN is the noise PSD and ΣN is the noise coherence
matrix. We suppress the frequency and time indices for the sake
of simplicity. The problem of the microphone post-filter is to
estimate the single-channel Wiener filter in (2), that is,

Hopt =
φFF

φFF + φNN
. (3)

2.1. Zelinski post-filter
The most popular post-filter is perhaps the Zelinski method; see
[2] for details of the performance analysis. Here, we briefly
review the Zelinski post-filter. Figure 1 shows a block chart of
the beamforming with the post-filter. As shown in Figure 1,
the time delay of arrival (TDOA) for the target signal is first
compensated. Those time delays can be, for example, estimated
through the phase transform (PHAT) [1, §10.1][7, §8.3.2]. Once
the TDOA estimates are obtained, we multiply the conjugate
of each component of the array manifold vector with the input
signal on the corresponding channel to obtain the time-aligned
signal.

In order to derive the Zelinski post-filter, let us now describe
the auto- and cross-spectral densities of the time-aligned signals
at sensor m and n. Denoting the time-aligned versions of the
input and noise signals as X ′ and N ′, we can compute their
auto- and cross-spectral densities as

φX′mX′m = φFF + φN′mN′m + 2<
{
φFN′m

}
(4)

φX′mX′n = φFF + φN′mN′n + φFN′n + φN′mF . (5)

Under the assumptions that:

1. the target and noise signals are uncorrelated, φFN′m ∀m,

2. the noise PSD is the same among all the chan-
nels, φN′mN′m = φNN ∀m, and

3. the noise signals are uncorrelated between different
channels, φN′mN′n = 0 ∀m 6= n,

equations (4) and (5) are simplified to

φX′mX′m = φFF + φNN (6)
φX′mX′n = φFF . (7)

Normally, the auto- and cross-spectral densities are recursively
updated at each frame [3] as

φ̂X′mX′n(t) = αφ̂X′mX′n(t− 1) + (1− α)φX′mX′n (8)

φ̂X′nX′n(t) = αφ̂X′nX′n(t− 1) + (1− α)φX′nX′n , (9)

where α is the forgetting factor [3]. Based on substituting (8)
and (9) into (3) and averaging the spectral densities over all
the possible channel combinations, we obtain the Zelinski post-
filter:

Hz =

2
S(S−1)

R
{∑S−2

m=0

∑S−1
n=n+1 φ̂X′mX′n

}
1
S

∑S−1
n=0 φ̂X′nX′n

, (10)

where the use of the real operator R {.} is justified by the fact
that the PSD of the desired signal is real and positive. For the
real operator, we take the absolute value since it leads to the
most robust result in our preliminary experiments. It should
be noted that the denominator provides an overestimate of the
noise PSD at the beamformer since it is calculated with the input
signals.

2.2. McCowan post-filter
Although Zelinki post-filtering has been shown to provide rea-
sonable recognition performance in various conditions, the per-
formance can be improved if the noise field is accurately mod-
eled. In fact, the noise signals between different sensors are
correlated in many cases. McCowan and Bourlard considered
the coherence matrix of the diffuse noise field; each component
of that coherence matrix can be expressed as

Γmn = sinc (ωdmn/c) , (11)

where dmn is the distance between sensors m and n and c is
the sound of speed. Under the assumption of the diffuse noise
field, the auto- and cross-spectral densities of the time-aligned
signals can be written as

φX′mX′m = φFF + φNN (12)
φX′mX′n = φFF + ΓmnφNN . (13)

The PSD of the desired signal can be then estimated as

φ̂
(mn)
FF =

<
{
φX′mX′n

}
− 1

2
<{Γmn}

(
φX′mX′m + φX′nX′n

)
1−<{Γmn}

(14)

in the same manner as the Zelinski’s method, the denomina-
tor of the post-filter can still be estimated and auto- and cross
spectral densities are recursively updated at each frame. The
robustness of estimate can be improved by averaging the results
over all unique sensor combinations. The resultant post-filter
can be expressed as

HM =

2
S(S−1)

∑S−2
m=0

∑S−1
n=m+1 φ̂

(mn)
FF

1
S

∑S−1
n=0 φX′nX′n

. (15)

We refer to the post-filter designed with (15) as the McCowan
post-filter. If Γmn = 1, m 6= n, the McCowan post-filter leads
to an indeterminate solution. It is normally avoided by applying
a maximum threshold on the coherence model.
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Figure 2: Schematic view of noise source localization.

3. New post-filter design algorithm based
on noise observations

In this work, we use the actual noise observations separated with
the null-steering beamformer for the Wiener post-filter. In or-
der to do it, we have to localize the dominant active sources
including the target and noise signals. We first find the peaks
of cross-correlation values between reference and target chan-
nels through the PHAT [1, §10.1][7, §8.3.2]. In our application,
speech recognition in a car, we can roughly know where the
speaker is. Thus, we select the peak associated with the direc-
tion closest to a passenger’s position and use the corresponding
time delay of arrival (TDOA) for beamforming. Then, we steer
the delay-and-sum beamformer over the areas except for the re-
gion of the target signal and seek the direction which provides
the maximum response power [7, §8.2.1]. In order to prevent
the desired signal into the noise estimate, we set the margin of
±30◦ from the direction of interest for the search space of the
noise. Figure 2 shows the scheme of localizing the dominant
noise source.

3.1. Separation of target signal
Given the position estimate of the target speaker, we compute
the weights of the super-directive (SD) beamformer with diag-
onal loading as

wSD =
(Γ + σI)−1v

vH(Γ + σI)−1v
, (16)

where each component of Γ is (11). The SD beamformer can
provide the better directivity at the low frequencies than delay-
and-sum beamforming and the sensitivity against mismatches
between actual and theoretical conditions can be controlled by
adjusting an amount of diagonal loading σ. For experiments
described in Section 4, we set σ = 0.01. With the SD beam-
former’s weight, we build a beamformer in generalized sidelobe
canceler (GSC) configuration. The output of such a GSC beam-
former can be expressed as

YSDMN = [wSD −Bwa]
H X. (17)

The blocking matrix B is computed so as to satisfy the orthog-
onal condition wH

SD B = 0, which implies that the target signal
arriving from the look direction will not be distorted. In con-
trast to normal practice, we adjust the active weight vector wa

to achieve the maximum negentropy of the beamformer’s out-
put [8]. As demonstrated in [8, 9], such a beamformer can sup-
press interference signals as well as reverberation effects with-
out signal cancellation encountered in traditional MVDR beam-
forming. The maximum negentropy beamformer is illustrated
in a box with a broken line of Figure 3.

3.2. Separation of noise signal
For our microphone array post-filter, the noise signal has to
be separated. It can be effectively accomplished by the null-

- 
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Figure 3: Block chart of our entire system.

steering beamforming technique [10]. The null-steering beam-
former’s weight wnull can be computed by solving the following
linear equation:

[vN v]H wnull = [1 0]T , (18)

where vN is the array manifold vector for the noise source.
Equation (18) indicates that wnull nulls the target source cor-
responding to the array manifold vector v and preserves the
noise signal associated with vN . Now, we can express the null-
steering beamformer’s output

Ynull = wH
nullX. (19)

For the post-filter, we use the beamformers’ outputs (17)
and (19) as the target and noise signal estimates, respectively.
Then, the PSDs of the target and noise signals are recursively
updated at each frame t as

φ̂FF (t) = αφ̂FF (t− 1) + (1− α) |YSDMN(t)|2 (20)

φ̂NN (t) = αφ̂NN (t− 1) + (1− α) |Ynull(t)|2 , (21)

where α is set to 0.6 for the experiments described later.
Upon substituting (20) and (21) into (3), we can compute

the post-filter as

Hp =
φ̂FF (t)

φ̂FF (t) + φ̂NN (t)
. (22)

Now, with (17) and (22), we can write the final output of our
beamformer and post-filter as F̂ = Hp YSDMN. Figure 3 shows
our entire beamforming system. For the experiments described
in Section 4, subband analysis and synthesis were performed
with a uniform DFT filter bank based on the modulation of a
single prototype impulse response [11], which was designed to
minimize each aliasing term individually. Adaptive processing
in the subband domain has the considerable advantage that the
filter coefficients can be optimized for each subband indepen-
dently, which provides a tremendous computational saving with
respect to time-domain processing with the filters of the same
length.

4. Speech Recognition Experiment
Test data for speech recognition experiments were recorded
with a microphone array with two sensors in a car under eight
different operating conditions that were some combination of
the following states: engine running in a stationary state (Idle),
moving on a highway at speeds of 35 mph and 65 mph, with a
fan on (Fan), turning signal on (Turn) and keeping passenger-
side window open (Wind). The recording setup consisted of two
microphones placed 3.8 cm apart, mounted on the passenger-
side sun shield. Speakers were seated in the passenger seat be-
side a driver, broadside to the microphone array. The passen-
ger seat was adjusted so that the distance between the speak-
ers and the microphone array was approximately 25 cm. The



Post-filtering WER (%WER)
Close-talking microphone (CTM) 14.5 %
Single distant microphone (SDM) 33.7 %

D&S BF with Zelinski PF 30.1 %
Super-directive (SD) BF + Zelinski PF 30.0 %

SD-MN BF + Zelinski PF 28.9 %
SD-MN BF + McCowan PF 29.9 %

SD-MN BF + the new PF 26.7 %

Table 1: Averages of word error rates (WERs) for each post-
filtering algorithm with a matched model.

speaker additionally wore a headset mounted (close-talking)
microphone. All three channels were digitized at a sampling
rate of 48 kHz. The same setup was used for recording speech
uttered by the multiple speakers. Each speaker read out sen-
tences from the Wall-Street Journal-0 (WSJ0) corpus. The test
data consisted of 1000 utterances from the recorded data. Dis-
tant speech recognition was performed on the data processed
through the proposed algorithm (and it’s comparators). For this,
the CMU Sphinx-3 ASR system was used. Acoustic models
were trained using the WSJ1 corpus, and the language model
was trained using the WSJ1 transcriptions, with an extended
27,000 word vocabulary. The baseline acoustic models con-
sisted of 8 Gaussian/state, the left-to-right HMMs with 6000
tied states. In order to improve robustness, acoustic models
were trained on data containing digitally added noise of various
types (recorded from different car states in different car types)
at various SNRs ranging from -20 to 20 dB. It was found that
acoustic model trained with these corrupted data provided the
best performance in general for real data recorded in car-noise
environments for this experiment.

Table 1 shows the averages of word error rates (WERs) over
different operating conditions for each beamformer and post-
filtering algorithm. As a reference, the WER obtained with a
close-talking microphone (CTM) is also described. It is clear
from Table 1 that the WER of 33.7 % obtained with the sin-
gle distant microphone (SDM) can be reduced by any beam-
forming algorithm with post-filtering. It is also clear that super-
directive maximum negentropy beamforming (SD-MN BF) can
achieve the better recognition performance than the other tra-
ditional beamformers, delay-and-sum beamforming (D&S BF)
and super-directive beamforming (SD BF). We can also see
from Table 1 that our post-filter achieves the best recognition
performance, the WER of 26.7 %.

We further investigate the effects of the post-filters in differ-
ent acoustic conditions. Figure 4 shows the WERs obtained un-
der the different operating conditions. As references, the WER
obtained with the CTM and SDM are also depicted in Figure 4.
In order to plot results of the post-filters for Figure 4, SD-MN
beamforming was performed before post-filtering. It is clear
from Figure 4 that our post-filter can further improve the recog-
nition performance of the SD-MN beamformer. We consider
that this is because our post-filter design method does not make
any static noise field assumption which can cause a mismatch
between the theoretical and actual noise fields. Notice that our
post-filter can also obtain spatially-uncorrelated noise estimates
and filter them out even if the assumption of the Zelinski post-
fitler holds. Thus, our post-filter method is more robust than the
other post-filters.

5. Conclusion
In this work, we proposed the new post-filter method based
on noise measurements separated with the null-steering beam-
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Figure 4: Word error rates for each post-filtering method in dif-
ferent acoustic conditions.

former. We also investigated the effects of the microphone array
post-filters on speech recognition. It was demonstrated through
the speech recognition experiments in the car that our post-filter
with maximum negentropy beamforming with super directivity
could achieve the best recognition performance.

We plan to apply our post-filtering method to the larger size
of the microphone array with more than two sensors.
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