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ABSTRACT

Conventional approaches to estimating speakers’ physiometric pa-
rameters such as height, age, weight etc. from their voice analyze
the speech signal at relatively coarse time resolutions, typically with
analysis windows of 25ms or longer. At these resolutions the analy-
sis effectively captures the structure of the supra-glottal vocal tract.
In this paper we hypothesize that by analyzing the signal at a finer
temporal resolution that is lower than a pitch period, it may be pos-
sible to analyze segments of the speech signal that are obtained en-
tirely when the glottis is open, and thereby capture some of the sub-
glottal structure that may be represented in the voice. To explore
this hypothesis we propose an analysis approach that combines sig-
nal analysis techniques suited to fine-temporal-resolution analysis
and well-known regression models. We test it on the prediction
of heights and ages of speakers from a standard speech database.
Our findings show that the higher-resolution analysis does provide
benefits over conventional analysis for estimating speaker height, al-
though it is less useful in predicting age.

Index Terms— Physiometric measurements, Voice biometrics,
Voice forensics, Height, Age, Short-time analysis

1. INTRODUCTION

In its capacity as a biometric signal, the human voice has been
the subject of scientific investigations in a large number of fields.
Amongst other things, researchers have sought to investigate its cor-
relations to various physiometric parameters of the speaker, which
includes the set of physiological parameters such as age [1, 2], and
physical parameters such as height [3, 4], weight [5, 6], body size
[7, 8, 9, 10] etc. The underlying expectation is that the dimensions
and health of various parts of the human speech production appa-
ratus including the lungs, the larynx, the length of the vocal tract,
the oral cavities etc. depend on the size and age of the person. The
characteristics of the speech production apparatus, in turn, affect the
nature of the speech produced by it. Ergo, correlations must exist
between the speech signal and and the physiometric parameters of
the speaker.

From a forensic perspective, these correlations may be exploited
to make prognostications about the speaker from samples of their
speech, a fact that has not escaped the observation of researchers.
Most attention has been paid to estimating the height of the speaker.
Griesbach, Ganchev et al. explore a number of utterance-level char-
acteristics of the speech signal and a number of regression strategies
in order to estimate the speaker’s height [3, 11, 4]. Williams and
Hansen suggest the fusion of multiple regression strategies for the
same problem based on spectral characterizations of the signal in
[12, 13]. Poorjam and co-authors attempt to predict speaker height
from factors of aggregate statistical characterizations of the signal
[14]. Arsikere et al. [15, 16] and others suggest the prediction of

speaker height through a preliminary estimate of the speaker’s sub-
glottal resonances.

In [17] Schotz attempts to predict speaker age through a CART
tree applied to speech measurements. Muller and Burkhardt [18]
attempt to predict age from cepstral and pitch measurements. Li et
al. [19] consider prosodic cues for the same problem. Bahari et
al. [20] do so based on characterizations of aggregate statistics. In
general, though, prediction of age from voice is considerably less
successful than the prediction of height.

In all cases, the analyses of the signal utilized to derive features
that may be predictive of the feature being estimated are tempo-
rally coarse-grained. The speech signal is generally segmented into
frames of about 25 milliseconds, an analysis that is no different than
that applied to other tasks such as speech recognition. Approaches
such as [14] further do not resolve the frequency or temporal struc-
ture of the signal, and represent it through aggregate statistical char-
acterizations computed over ensembles of cepstral or spectral vec-
tors derived from it. While [16] and [13] consider more physiologi-
cally motivated features such as formants and subglottal-resonances,
these too are generally derived from temporally-coarse characteriza-
tions of the signal and face the loss of resolution it entails.

The relatively broad analysis window of 25ms is a good com-
promise by being not too short for effective spectral analysis, and not
too broad for the spectral characteristics of the signal to change con-
siderably within the window, and is an excellent choice for pattern
recognition tasks such as speech or speaker recognition. However, it
is not clear that this is the best choice of analysis window for phys-
iometric characterization of the speaker. As we argue in Section 2,
this may, in fact, be too wide for effective characterization of lower
portions of the vocal tract below the glottis, and not wide enough to
characterize the upper regions above the glottis well.

We investigate this hypothesis by analyzing the speech signal at
various temporal resolutions. At higher temporal resolutions con-
ventional spectral analyses do not provide useful characterizations.
We also propose alternate mechanisms to compute features for these
analysis. While we cannot directly determine whether these analy-
ses do indeed explicitly capture subglottal structure, we can evaluate
them through secondary effects – our ability to predict physiometric
parameters through these measurements. We investigate the utility
of the analyses at these various temporal scales for the problems of
estimation of speaker height and speaker age.

Our results are mixed. While we find that analyses of the speech
signal with greater temporal resolution does provide gains when pre-
dicting height, compared to conventional analysis, the improvement
is minor. However the higher resolution analyses provide comple-
mentary information that can be combined with conventional anal-
yses for improved predictions. Observed improvements in age pre-
diction are noted to be statistically insignificant when compared to
a default baseline predictor. We also note in passing that much re-
ported literature also lists prediction accuracies that are comparable

978-1-4673-9448-2/16/$31.00 c© 2016 IEEE



Fig. 1. The human vocal apparatus.

to or worse than the baseline predictors, at least on the dataset we
evaluate predictions on.

The rest of our paper is as follows. In Section 2 we briefly out-
line the motivation behind our hypotheses. In Section 3 we describe
the signal processing procedures required to derive features at higher
temporal resolution. In Section 4 we describe our overall analysis
and prediction setup. In Section 5 we describe our experiments and
finally, in Section 6 we present our conclusions.

2. TEMPORAL RESOLUTION OF SPEECH PRODUCTION

The speech production system is well known. Figure 1 shows a sum-
mary illustration of the system. The entire structure includes the
lungs, the glottis, the epiglottal opening, the pharynx, and the oral
and nasal cavities. The glottis and the regions below the glottis in-
cluding the trachea and the lungs are the “sub-glottal” regions of the
vocal apparatus. The regions above the glottis including the phar-
ynx and the oral and nasal cavities are the “supra-glottal” regions.
During speech production air pressure generated by the lungs makes
its way past the glottis and excites the vocal tract. The speech we
hear is the response of the vocal tract to this excitation. Variations of
sound are obtained by manipulating the structures of the vocal cav-
ity, creating different resonance chambers and varying their resonant
frequencies.

A key aspect of the entire process is the excitation produced by
the lungs. The passage from the lungs to the rest of the vocal tract
is “gated” by the vocal folds (2), which control the glottal opening
between the lungs and the rest of the vocal tract. During unvoiced
sounds the vocal folds do not vibrate and the glottis remains open.
The airflow through the glottis is continuous, resulting in noise-like
sounds such as the fricated /s/, /sh/, /hh/, /f/ etc.

During phonated speech, including vowel and other voiced
sounds, on the other hand, the vocal folds vibrate, resulting in pe-
riodic complete or partial closure of the glottis. This results in a
pulsed airflow through the glottis, which gives voiced sounds their
periodic nature. Figure 3 shows a typical pattern of glottal opening
for a voiced sound, the resulting glottal airflow and the periodic
speech signal that results. The pitch period of the signal is the
spacing between concurrent pulses in the glottal waveform. Typical
voiced speech has a pitch ranging from about 80Hz to 400Hz, cor-
responding to a pitch period ranging from 2.5ms to about 12.5 ms.

As can be inferred from the above discussion, the speech sig-
nal provides cues for physiometric characterization. The speaker’s
height is clearly related to the length of the vocal tract – taller people
may be expected to have longer vocal tracts. Hence, the vocal tract

Fig. 2. Open and closed glottis.

Fig. 3. The upper plot shows the speech waveform. The middle
plot is an electroglottograph measurement showing vocal-fold con-
tact area. The lower curve is the estimated glottal airflow.

resonances present in the speech signal may be expected to inform
us of the speaker’s height. Information about the speaker’s height
is also present in the regions of the vocal apparatus that are below
the glottis. The length of the trachea, the diaphragm, and the size
of the lungs relate to the speaker’s body size. Consequently, we
may also expect to derive information about the speaker’s body size
from the effect of sub-glottal structures on the speech signal. Indeed,
at least one of these characteristics, namely sub-glottal resonances,
have been demonstrated to be good predictors of peoples’ heights
[16]. Sub-glottal structures are also affected by age; hence we may
also expect to derive information about the talker’s age from charac-
terizing sub-glottal phenomena in the speech signal.

This brings us to the key point we aim to make with the above
discussion. Conventional analysis of speech signals typically an-
alyzes the signal in windows of about 25ms. In voiced sounds a
single window will hence include multiple pitch periods, even for
speech with the lowest pitch. Thus each analysis window includes
regions of both closed and open glottis. A somewhat paradoxical
phenomenon that results from the acoustics of closed tubes is that
the energy in the speech signal is, in fact, considerably higher when
the glottis is closed than when it is open. This is also illustrated by
Figure 3, where we notice that the amplitude of the speech signal is
much higher when the vocal-fold contact area is largest, i.e. when
the glottis is closed. The signal is seen to be much weaker when the
glottis is actually open. In the glottis-closed phase the speech sig-
nal primarily characterizes the acoustic properties of the vocal tract
above the glottis, since the region below does not contribute to the
signal. Consequently, in any analysis window of 25ms or longer, the
spectral energy in any analysis window largely reflects the proper-
ties of the supra-glottal vocal tract, which overwhelms the acoustic
signatures of the sub-glottal regions.

Unvoiced sounds other than /hh/ are usually associated with a
constriction of the vocal tract and the spectrum primarily reflects
the acoustic properties of the supra-glottal vocal tract ahead of the



constriction. We do not, in general, expect to get strong signatures
of sub-glottal phenomena from unvoiced sounds.

We propose that as a remedy shorter analysis windows, such
as those that fall entirely within a single open period of the glottis,
will enable us to effectively “look into” the sub-glottal regions of
the vocal tract by analyzing segments of the signal that are obtained
entirely when the glottis is open during voiced portions of the signal.
In effect, by taking snapshots in the brief periods when the glottis
is open, signal analysis may be able to capture some information
about what lies beyond it. As Figure 3 shows, glottal opening lasts
considerably less than a pitch period. Pitch periods can vary from
12.5ms to 2.5ms (or even go lower or higher on occasion), with the
higher range generally holding for females. This would argue for
analysis windows that may be as low as 1ms.

On the other hand, the conventional analysis windows of 25ms
typically only consider one or two glottal closure periods. This may
be insufficient to capture resonances of the vocal tract with longer
time constants. This argues for longer analysis windows than the
ordinary.

We will therefore investigate the extraction of features from both
extremely short analysis windows, and analysis windows that are
much longer than conventional analysis windows as the basis for
predicting height. For the purposes of this study we will restrict
ourselves to spectral characterizations, and not consider the more
detailed analyses, such as of formants etc., that are commonly used
in this context.

3. ESTIMATING THE SPECTRUM

Estimation of spectral characteristics from extremely small windows
however comes with predictable time-frequency resolution tradeoffs.
The speech signal is typically sampled at 16000 samples per second,
a sampling rate that is adequate to capture information upto 8000Hz.
However, in a 1ms window this translates to a mere 16 samples, and
thus to a discrete Fourier transform with only 9 magnitude spectral
values spanning all frequencies. This is clearly inadequate to obtain
a well-resolved spectrum that can identify the spectral detail we wish
to capture.

In order to increase the number of samples in any analysis win-
dow, we upsample the signal to 256000 samples per second. Simply
upsampling the signal to obtain a larger number of samples in the
analysis window does not solve the problem. A Fourier spectrum
obtained from the upsampled signal is simply an interpolation of the
spectrum obtained with the lower sampling frequency. We illustrate
this in the upper panels of Figure 4.

Instead we use autoregressive (AR) spectral analysis to estimate
the spectrum of the signal [21]. AR analysis models the signal as
the output of an autoregressive process, such that the nth sample in
the signal is obtained as s[n] =

∑K
k=1 aks[n− k] + e[n], where K

is the order of the autoregression, ak are the regression parameters,
and e[n] is the innovation that drives the process, and is assumed to
be white. This is equivalent to modelling the signal as the output of
an all-pole filter H(z) = g

1−
∑

k akz
−k excited by white noise. The

filter can also equivalently be expressed as H(z) = g∏K
i=1(1−piz

−1)
,

where pis are the poles of the filter that represent its resonant fre-
quencies, and can be derived from the AR parameters ak. The spec-
trum of the signal at any frequency f can be read off from H(z) as
H(ej2πf ).

Traditional AR analysis applies low-order (low values of K)
analysis to estimate the spectrum of a signal – typically using an
order of 10-20 for an analysis window of 250-400 samples. For
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Fig. 4. (a) The spectrum of a 1ms segment of a sum of three cosines
at 800,1600 and 3200Hz. The signal was upsampled from 16000
samples/sec to 256k samples/sec. The green curve shows the dis-
crete Fourier transform spectrum, the blue curve is a 20th order Burg
estimate, and the red curve is a 128th order Burg estimate. (b) The
discrete Fourier transform spectrum of 1ms of voiced speech after
it has been upsampled to 256000 samples/second from 16000 sam-
ples/second. Only the frequency range 0-8000Hz is shown. (c) The
complete spectrum (from 0-128kHz) obtained through 128-order
Burg analysis. The blue curve shows the 20th order Burg spectrum,
and the red curve is the 128th order Burg spectrum. Both estimators
are seen to use several poles to model low-energy high-frequency
components. (d) A zoom-in of the Burg spectrum between 0 and
8kHz obtained from the upsampled signal. The 128th order Burg
spectrum captures more structure.

our problem, however, we must consider the fact that the signal has
been upsampled. In theory, AR models are only applicable when
the spectrum has no zeros. The upsampled signal does not actually
have zeros at any frequency, and spectral artifacts corresponding to
low-pass filtered aliased copies of the lower-frequency components
persist; however this also means that many of the poles of the fil-
ter end up modelling the unnecessary high-frequency components of
the signal. In order to compensate for this, we must therefore use a
high-order AR model to capture the spectrum. We have found a high
AR order of 128, corresponding to half the number of samples in a
1ms analysis window, to result in the best estimates of the spectrum
in the 0-8000Hz band. A number of different techniques have been
proposed in the literature to estimate AR parameters. We employ
Burg’s maximum entropy method [22], which has several theoreti-
cal guarantees, and was also observed to result in the most reliable
spectral estimates.

Figure 4 shows spectra obtained with 20 and 128-order AR mod-
els. In the first example (a) we attempt to estimate the spectrum of
a mixture of three sinusoids embedded in low levels of white noise,
which has been upsampled from 16000Hz to 256 kHz. We observe
that the 128-order model is able to capture the low frequency peaks
accurately while the low (20) order models fails completely. The
second example (b-d) shows spectra obtained for a 1ms window of



upsampled speech using the two models. Again, we observe the 128-
order model to result in significantly more detail in the spectrum.

Thus, in summary, we employ the following analysis: for short
analysis windows (of less than 5ms), we compute an 128-order AR
model using the Burg method. We finally compute a 64-point log
spectrum spanning a uniformly spaced range of frequencies from
20Hz-6400Hz from the obtained AR model. For longer analysis
windows we compute conventional Mel-frequency cepstra using 64
analysis filters. All representations is subsequently reduced to 20
dimensions via principal component analysis.

4. PREDICTING PHYIOMETRIC PARAMETERS

We utilize the proposed spectral characterizations to predict the age
and the height of the individual. We use a simple bag-of-words rep-
resentation described in [23] together with random forest regression
[24] to make our predictions.

We assume a corpus of training recordings, for which the age
and height of the speaker are known.

The individual utterances that we work with are of different
lengths and hence result in differing numbers of feature vectors. In
a first step, we convert these variable-length recordings into a fixed-
length feature representation that we can use to perform regressions.
To do so, we train a 1024-component Gaussian mixture model with
the collection of feature vectors obtained from the entire training
data. Subsequently, in order to convert any recording to a fixed-
length representation, we compute a soft assignment of each of the
feature vectors in the recording to the 1024 Gaussians. Each vec-
tor x in a recording X thus contributes a count P (k|x) (where k
represents the Gaussian index) to each of the K Gaussians in the
distribution. The recording is then converted to a 1024-dimensional
representation, where the kth component of this representation is
given by

∑
x∈X P (k|x). Every recording in the training corpus is

converted to a fixed 1024-dimensional representation in this manner,
as is each test recording.

The collection of training recordings, and the corresponding la-
bels (age or height) are then used to train a random forest regression.
We employed forests with 100 trees. Increasing the number of trees
did not affect prediction. The dependent parameter (age or height)
of the test recordings are subsequently computed using the trained
model.

When multiple predictions, obtained for instance from different
features, were combined, we performed the combination by simple
averaging of the predicted values.

5. EXPERIMENTS

We conducted a series of experiment on the TIMIT database [25].
The TIMIT database comprises recordings from 630 speakers, each
of who has spoken ten phonetically balanced sentences. Of these
462 speakers have been designated as the training set of speakers,
and 168 have been designated as the test set. The training set, in
turn, comprises 136 female speakers and 326 male speakers. The
test set includes 112 male speakers and 56 female speakers. Thus,
the training set comprises a total of 4620 recordings, 3260 by male
speakers and 1360 by female speakers. The test set comprises 1680
utterances, 1120 by male speakers and 560 by female speakers.

The age and height of each of the speakers has been recorded.
The age and height ranges of the data are provided in Table 1. Also
given are the mean and standard deviation of each set.

In our experiments we consider a “default” predictor as one that
predicts a test set parameter (age or height) as the average value of

that parameter over the training set. The prediction of the default
predictor is the a priori estimate of the parameter in the absence of
any speech. A predictor is useless unless it produces significantly
lower error than this default. Table 2 shows the root mean squared
error (RMSE) and the mean absolute error (MAE) obtained with the
default predictor on both the male and female subsets of the data.
All predictions for male speakers are based on the male component
of the training set, while predictions for female speakers are based
on the female portion of the training set.

Male Female
Min Max µ σ Min Max µ σ

age
Train 21 76 31.0 7.4 21 86 30.7 9.7
Test 23 65 31.5 8.1 23 69 31.2 9.1
ht
Train 157 198 180 7.1 145 183 165 6.8
Test 163 203 179 7.0 152 180 167 6.4

Table 1. Age and height statistics for the training and test set of
TIMIT. Units for height are cm.

Age Height
RMSE MAE RMSE MAE

Male 8.1 5.7 7.0 5.3
Female 9.1 6.2 6.5 5.2

Table 2. Root mean squared error and mean absolute error on the
test set using the default predictor.

The challenges in predicting physiometric parameters from
voice can be gauged from the results in the literature. In predicting
height, the MAE of the default classifiers are, in fact, statistically
indistinguishable, and sometimes better than the best prediction er-
ror reported by Mporas [11], Ganchev [3], and Williams [12]among
others, and all but the best results reported in [15] and Hansen [13].
In general, these results could have been improved or matched sim-
ply by using a default predictor that predicts the mean height of the
population for all subjects.

There are no published results that beat the default predictor for
age on this data set to the best of our knowledge.

It is this rather discouraging state of affairs that we compare our
techniques to.

In our first experiment we attempted to predict the height of the
speaker from measurements derived from their speech. Predictions
were made for each utterance by the speaker. We evaluated a num-
ber of different analysis window sizes. To evaluate analysis window
sizes that were comparable to pitch periods, window sizes of 1ms,
2ms and 4ms were tested. The conventional 25ms window was also
tested. Finally, an analysis window size of 100ms was also tested to
evaluate the hypothesis that using longer analysis windows may also
be useful.

Table 3 shows the results obtained using these analysis windows.
Separate predictions were made for male and female subjects, since
it was assumed that the gender of a speaker was known, or could
otherwise be determined a priori accurately. The table shows the
results obtained with the different analysis windows. It also shows
results obtained by fusing the best four results in each case.

We note at the outset that the best results reported in Table 3
are better than a baseline classifier. However, we must also note
that a paired t-test found this difference to be significant only at the



Male Female
RMSE MAE RMSE MAE

1ms 6.8 5.2 6.2 5.0
2ms 6.7 5.1 6.4 5.1
4ms 6.7 5.1 6.5 5.1
25ms 6.9 5.2 6.4 5.1
100ms 6.9 5.2 6.3 5.1
Fusion 6.7 5.0 6.1 5.0

Table 3. Prediction of height

p = 0.1 level for both genders. This is nevertheless better than
several reported results on this set, where the reported results are
often worse than a baseline classifier.

Specifically, in the context of our hypothesis that smaller anal-
ysis windows may provide us a benefit by being able to “look” be-
yond the speaker’s glottis, we find we cannot discard this hypothesis.
For both male and female speakers the results obtained with smaller
analysis windows are comparable to those obtained with the larger
windows, and are in fact marginally better, although the difference
will not hold up to rigorous statistical significance tests. We may
infer that in the worst case, the additional frequency resolution from
the longer analysis windows of 25ms does not provide any signifi-
cant benefit for detecting speaker heights, at least within our frame-
work.

A somewhat different conclusion is drawn when we consider the
fused results. Fusion of results from low and high-resolution analysis
windows results in a significant improvement in prediction accuracy
(at the p = 0.1 level) compared to both the conventional analysis
window of 25ms or a fusion of the results from the 25ms and 100ms
windows. We infer from this that the smaller analysis windows do
provide information that is complementary to conventional analyses.

In a second experiment we tried to predict the age of the speaker
using the same analysis windows. Once again, we report results with
analysis windows of 1,2,4, 25 and 100ms, as well as the fusion of the
best four. These results are reported in Table 4.

Male Female
RMSE MAE RMSE MAE

1ms 7.7 5.4 9.1 6.8
2ms 7.8 5.5 9.2 7.0
4ms 7.9 5.6 9.1 6.8
25ms 8.0 5.7 8.8 6.1
100ms 8.1 6.2 8.6 6.0
Fusion 7.8 5.5 8.9 6.5

Table 4. Prediction of age

Unfortunately, prediction of age remains a difficult task and our
results do not significantly support the idea that this may be achiev-
able using simple spectral characterizations of the speech signal.
While we do observe some improvements over a default predictor,
the results do not actually hold up to statistical significance tests,
even at the p = 0.1 level. Nevertheless, we venture to make some
statements about the patterns observed. Different trends are ob-
served for male and female subjects. The prediction error for male
subjects is observed to decrease with decreasing analysis window
size. The best results are obtained with windows of 1ms (and, statis-
tically speaking, the most significant differences from the baseline
classifier were obtained with the 1ms analysis windows). In the case
of the female subjects the trend was reversed. The best prediction

was obtained with the largest analysis window. We speculate that
this difference may be because male pitch is lower, and the smallest
analysis windows do in fact permit us to “peer” into the sub-glottal
vocal tract. The pitch periods for females are too small for useful
measurements of age-related measurements from the sub-glottal re-
gion – the extra information to be derived by registering signatures
from the sub-glottal regions is cancelled out by the loss of frequency
resolution due to the very small analysis windows.

6. CONCLUSIONS

We can conclude from the above experiments that high-temporal-
resolution spectral analysis using short analysis windows that are
short enough to analyze open-glottis regions of the spectrum do ap-
pear to provide useful input, at least for the prediction of height.
However, our analysis remains incomplete. While the mechanisms
for deriving spectral features from larger analysis windows are well
studied, it is unclear how best to effectively derive spectral detail
from the smaller windows. In any case, we are eventually limited by
time-frequency uncertainty. Our analysis windows are fixed in size
in each experiment. Both, the results and our own explanations seem
to make a case for pitch-synchronous analysis with analysis windows
which track pitch period; this has not been evaluated.

Also, the literature clarifies that better prediction may be ob-
tained by varying the regression models that make the actual predic-
tions; this direction remains to be explored.

The prediction of age remains a more challenging problem. It is
unclear that the trends we observe vis-a-vis male vs. female subjects
are meaningful in any way. In general, our results are discouraging.

We also note that our results are borderline in terms of the sta-
tistical significance of the improvements over a baseline population-
mean predictor. In the case of age no improvements are observed
whatsoever. Curiously, we also do note that a significant amount of
literature has reported similar or even worse results, without actually
performing the comparison to the baseline classifier in what may be
an instance of collective oversight.

It is our hope, and indeed expectation that the situation will im-
prove and better results with greater statistical significance may be
obtained with larger training and test data. Age and height informa-
tion are available for several large publicly available corpora. We are
currently investigating this avenue.
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height estimation from speech: Fusing spectral regression and
statistical acoustic models,” The Journal of the Acoustical So-
ciety of America, vol. 138, no. 2, pp. 1052–1067, 2015.

[14] Amir Hossein Poorjam, Mohamad Hasan Bahari, and
Vasileios Vasilakakis et. al., “Height estimation from speech
signals using i-vectors and least-squares support vector regres-
sion,” Proceedings TSP 2014, pp. 1–5, 2014.

[15] Harish Arsikere, Steven M Lulich, and Abeer Alwan, “Esti-
mating speaker height and subglottal resonances using MFCCs
and GMMs,” Signal Processing Letters, IEEE, vol. 21, no. 2,
pp. 159–162, 2014.

[16] Harish Arsikere, Gary K F Leung, Steven M Lulich, and Abeer
Alwan, “Automatic height estimation using the second sub-
glottal resonance,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2012 IEEE International Conference on. IEEE,
2012, pp. 3989–3992.
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