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ABSTRACT

We present an algorithm to dereverberate single- and multi-channel
audio recordings. The proposed algorithm models the magnitude
spectrograms of clean audio signals as histograms drawn from a
multinomial process. Spectrograms of reverberated signals are ob-
tained as histograms of draws from the PDF of the sum of two ran-
dom variables, one representing the spectrogram of clean speech
and the second the frequency decomposition of the room response.
The spectrogram of the clean signal is computed as a maximum-
likelihood estimate from the spectrogram of reverberant speech us-
ing an EM algorithm. Experimental evaluations show that the pro-
posed algorithm is able to greatly reduce the reverberation effects in
even highly reverberant signals captured in auditoria and other open
spaces.

Index Terms— acoustic signal analysis

1. INTRODUCTION

Reverberation affects the quality of audio signals in most recording
environments. Delayed and filtered copies of a signal from reflec-
tions off walls and other objects, interfere with the direct signal from
the audio source to the listener (which might be a recording device),
distorting it. While small amounts of reverberation are often toler-
able and even appreciated by human listeners, longer reverberations
(obtained from reflections that persist over extended periods of time)
can greatly reduce the perceptual quality of the signal. In auditoria
or other big recording spaces, it can often render the signal unintel-
ligible.

A variety of techniques have been proposed in the literature to
dereverberate signals. Most of them take advantage of the fact that
reverberation is primarily the effect of a linear filter – the room re-
sponse of the recording space – on the signal. This has led to the pro-
posal of several homomorphic techniques for dereverberation (e.g.
[1]), which take advantage of the fact that linear filters factor out as
additive terms in signal cepstra. The problem with these approaches
has been that the typical analysis window used to analyze the sig-
nals is usually less than 100ms long. Signal characteristics, particu-
larly for speech, change greatly over longer time periods and the use
of longer analysis windows is inappropriate. On the other hand for
most typical recording environments, the reverberation time, which
is characterized by their T60, the time taken for the reverberations
of an impulse to be attenuated by 60 decibels, usually exceeds the
length of this analysis window, and can sometimes extend into sev-
eral seconds. Homomorphic methods cannot account for the rever-
beration effects that exceed the length of the analysis window.

Variants of the above approach compute inverse filters to cancel

the effect of reverberation. These methods often make various as-
sumptions about the audio signal, such as harmonicity, independence
between samples etc. to arrive at the inverse filter (e.g. [2], [3]). Fre-
quently, these assumptions (e.g. harmonicity) are specific to a par-
ticular type of signal, e.g. speech. Still other methods employ other
models such as codebooks and switching linear dynamic systems [4]
to represent the signal for dereverberation. Once again, all of these
methods suffer from one or more of the following problems: analysis
windows that are shorter than the reverberation, assumptions about
the underlying signal, or reliance on detailed models of the clean
audio that are frequently not available. In [5], a non-negative matrix
factorization based method is presented that only makes assumptions
about the sparsity of the distribution of energy in spectral bands, and
is similar in concept to the approach presented in this paper.

In this paper we present a new approach to dereverberation of
speech signals. The technique employs the latent variable model pre-
sented in [6] to represent the process that generates the spectrogram
of any sound. Reverberation is approximated as a non-negative filter-
ing of individual spectral bands of the clean speech signal, and that
process too is modeled by a latent-variable generative model. Dere-
verberation is achieved by estimating the parameters of this model,
while imposing a minimum-entropy constraint on the process that
generates the clean spectrogram of the clean speech. Experimental
evaluations on real recordings in highly-reverberant and noisy envi-
ronments shows that the process is able to greatly reduce the rever-
beration in these signals and increase their intelligibility, albeit with
some minor artifacts.

One common approach to minimizing the effects of reverbera-
tion on audio signals is to capture them simultaneously with multiple
microphones. A variety of array-processing techniques may then be
applied to minimize the effect of the reverberation (e.g. [7]). How-
ever, these methods commonly require careful placement of micro-
phones (such that the room response observed by the microphones
is not significantly different) and localization of the sound source,
a notoriously difficult problem in reverberant conditions. The ap-
proach we present in this paper extends easily to the dereverbera-
tion of multi-channel audio, which can deal with multi-channel sig-
nals from arbitrarily placed microphones with very different room
responses without requiring localization.

The rest of the paper is arranged as follows: in Section 2 we
describe the basic signal model we employ to characterize the rever-
berant signal. In Section 3. we outline the proposed algorithm for
monaural recordings. In Section 4. we describe the multi-channel
extension of the algorithm. In Section 5 we describe our experiments
and finally in Section 6 we present our conclusions.



2. MODELLING REVERBERATION

Let x[l] be a clean audio signal produced by some source. The sound
is produced in a reverberant room. Let h[l] be the room impulse re-
sponse (RIR) from the sound source to the microphone recording the
sound. h[l] represents the reverberation in the room. The reverberant
signal y[l] that is actually recorded is given by

y[l] = x[l]⊗ h[l] =

L∑
p=0

h[p]x[l − p] (1)

where ⊗ represents the convolution operation and L is the length of
the RIR and relates to the T60 of the room. The source signal x[l]
can be expressed by its Gabor representation

x[l] =
∑
m

N−1∑
k=0

X(m, k)ws(l −mB)W
k(l−mB)
N (2)

where W k
N = exp(−j2πk/N), X(m, k) represents the kth fre-

quency component of the mth spectral vector in the short-time
Fourier transform (STFT) of x[l]. N represents the length of the
analysis window used to derive the STFT, and B is the number of
samples by which adjacent analysis frames shift. X(m, k) is given
by

X(m, k) =
∑
l

x[l]wa(l −mB)W
−k(l−mB)
N (3)

wa[l] and ws[l] are the biorthogonal analysis and synthesis windows
for the STFT respectively.

The STFT of the reverberated signal, y[l] can be approximated
by the convolution

Y (n, k) ≈
LH∑
l=0

X(n− l, k)H(l, k) = X(n, k)⊗n H(n, k) (4)

where LH = b(L + N − 1)/Bc and H(l, k) =

W
k(N−1)
N

∑2N−2
n=0 h[mB + n − N + 1]wh[N − n − 1]W−knN is

the STFT of the RIR, h[l]. wh[l] is the convolution of wa[l] and
ws[l]. ⊗n represents a convolution operation along n.

3. STATISTICAL MODEL FOR REVERBERANT
SPECTROGRAMS

We employ a model proposed in [6] to represent the spectrograms.
According to this model, the magnitude spectrogram of any sound
is actually a histogram of draws from a bivariate distribution over
time and frequency indices. Although this is an artificial construct
and does not represent any physical generating process, it has been
demonstrated to be highly effective for various problems such as sig-
nal separation, component discovery and learning of overcomplete
codebooks of bases [8]. The magnitude spectrogram |S(n, k)| of
the clean audio signal is assumed to be a histogram drawn from a
bivariate distribution PS(n, k) over the discrete random variables n
and k. Similarly |H(n, k)| is assumed to be a histogram drawn from
the distribution PH(n|k). |Y (n, k)| is assumed to have been gener-
ated by a process that first draws a the tuple (n1, k) from PS(n, k),
then draws n2 from PH(n|k), and finally produces (n, k) where
n = n1 + n2. The generating process is illustrated in Figure 1.
Using this model, we can now write

|Y (n, k)| = CPS(n, k)⊗n PH(n|k) +R(n, k) (5)

Fig. 1. Generative model for the histogram representing the magni-
tude spectrogram of reverberant speech.

C is a scaling constant and R(n, k) captures the natural variations
from the mean that occur in any drawing process. ⊗n represents a
convolution operation along n. In practice, we can relate the terms in
the above equation to those in Equation 4 as PS(n, k) ∝ |S(n, k)|
and PH(n|k) ∝ |H(n, k)|. R(n, k) represents the correction term
to be factored in to account for the fact that the magnitude of the
sum of complex numbers is not equal to the sum of their magnitudes.
Alternately, we can write

|Y (n, k)| ∼ PS(n, k)⊗n PH(n|k) (6)

4. SINGLE CHANNEL ALGORITHM FOR
DEREVERBERATION

Based on Equation 6 we cast the problem of dereverberating the
audio signal as follows: given only the STFT Y (n, k) of the re-
verberant speech we must estimate PS(n, k) and PH(n|k). The
magnitude of the STFT of the underlying clean speech is given by
|S(n, k)| = CPS(n, k). The scaling factor C ensures that the sum
of spectral magnitudes in the reverberated signal is the same as that
in the dereverberated one. The clean audio signal is obtained from
|S(n, k)| by “stealing” the phase of Y (n, k) to obtain a complex
STFT, which may be inverted to obtain a time-domain signal.

It is clear from Equation 6 that the problem is under speci-
fied. To compensate for this, we must provide some kind of a pri-
ori model for PS(n, k). Our prior is based on the observation that
the magnitude spectra of most sounds is very sparse – at any time
there are only a few frequency components with high energy. Al-
ternately viewed, the entropy of PS(n, k) is low. Hence, we spec-
ify that the a priori probability distribution of PS(n, k) is given
by P (PS) ∝ exp(−αH(PS)), where H(PS) is the entropy of
PS(n, k), and α is a weighting term. This prior imputes higher a pri-
ori probability to distributions (PS(n, k)) that have lower entropy.

We can now derive the update rules for the estimation of
PS(n, k) and PH(n|k) using the Expectation Maximization (EM)
algorithm. The update rule for PH(n|k) is given by

P (m|n, k) =
PS(m, k)PH(n−m|k)∑
m′ PS(m′, k)PH(n−m′|k) (7)

PH(n|k) = C1

∑
m

|Y (n+m, k)|P (n|m, k) (8)

C1 is a normalizing constant that ensures that PH(n|k) sums to 1.0.



To obtain the update for PS(n, k) we have

q(n, k) =
∑
m

|Y (m, k)|P (n|m, k) (9)

q(n, k)

PS(n, k)
+ α+ α logPS(n, k) + ρ = 0 (10)

PS(n, k) =
−q(n, k)/α

W(−q(n, k)e1+ρ/α/α)
(11)

ρ is a lagrange multiplier.W(θ) is Lambert’sW function. PS(n, k)
is obtained through fixed point iterations of Equations 10 and 11.
Typically 2-3 iterations are sufficient.

To initialize the algorithm we initially set PS(n, k) ∝ |Y (n, k)|
and PH(n|k) = 1/n, 0 ≤ n < N , where N is the assumed length
of the STFT of the RIR. Typically we setN to be equal to half of the
T60, which in turn can be estimated using algorithms such as [9].

5. MULTICHANNEL EXTENSION

Multichannel recordings have multiple recordings of the form

yj [l] = x[l]⊗ h[l] =

L∑
p=0

hj [p]x[l − p] (12)

where yj [l] is the signal captured by the jth microphone and hj [l]
is the room response observed by the jth microphone. The STFT of
yj [l] is given by

Yj(n, k) ≈ X(n, k)⊗n Hj(n, k) (13)

where Yj(n, k) is the STFT of yj [l] and Hj(k, n) is the STFT of
hj [l]. Note that Equations 12 and 13 assume that the RIRs observed
in the different channels are entirely different; only the underlying
(and unobserved) clean audio is identical for all channels.

The corresponding statistical model is

|Yj(n, k)| ∼ PS(n, k)⊗n P jH(n|k) (14)

P jH(n|k) is the bivariate multinomial which models |Hj(n, k)|.
Equation 14 states that |Yj(n, k)| is the histogram of observations
obtained by drawing (n1, k) from PS(n, k), n2 from P jH(n|k) and
forming the final observation as (n, k) = (n1 + n2, k).

Given Yj(n, k) for all channels, we must now estimate
PS(n, k). The update rules for this estimation can be derived as
before using EM, and are given by

Pj(m|n, k) =
PS(m, k)P jH(n−m|k)∑
m′ PS(m′, k)P jH(n−m′|k)

(15)

P jH(n|k) = C1

∑
m

|Yj(n+m, k)|Pj(n|m, k) (16)

C1 is a normalizing constant as before. The updates for PS(n, k)
now become

q(n, k) =
∑
j

∑
m

|Yj(m, k)|Pj(n|m, k) (17)

q(n, k)

PS(n, k)
+ α+ α logPS(n, k) + ρ = 0 (18)

PS(n, k) =
−q(n, k)/α

W(−q(n, k)e1+ρ/α/α)
(19)

Note that this is identical to the update rules for monaural signals,
with the difference that q is now obtained by averaging over all chan-
nels. Note that the fact that the same PS(n, k) is assumed for all
channels reduces the degree of underspecification of Equation 14;
nevertheless the overall model remains underspecified and the en-
tropic prior must still be employed. As before, the dereverberated
spectrogram is obtained as S(n, k) = CPS(n, k). C is now set to
equalize the total of all magnitude spectral values of S(n, k) and one
of the channels: Yj(n, k).

6. RESULTS

A number of different experiments were run to evaluate the proposed
algorithm.
Monaural Dereverberation: In the first experiment clean speech
signals were reverberated with an artificially generated room re-
sponse with times (T60) between 0 and 2 seconds. The room re-
sponse was obtained with the image method for a room of dimen-
sions 3m x 4m x 5m. The synthesized signals were all monaural.

The signals were then dereverberated using the proposed
method. The signals were analyzed with an STFT that employed
windows that were 64ms wide. Adjacent windows overlapped by
48ms. In all cases, the reverberation time was assumed to be known
(as mentioned earlier, this is not a bad assumption; reverb times
can be estimated using techniques such as those in [9]). The width
of H(k,m), the time-spectral representation of the room impulse
response, was assumed to be half the known RIR length. In or-
der to ensure that all frequencies contribute equally to the overall
estimation, the STFT of the signals were first “balanced” by nor-
malizing every time-frequency element as follows: |Ŷ (n, k))| =
|Y (n, k)|/ 1

N

∑
m |Y (m, k)|.

Table 1 shows the estimated SNR improvements obtained from
dereverberation. The SNR was computed by comparing the dere-
verberated signal to the original clean signal, and characterizing all
differences as noise. In order to compute the SNR the two signals
first had to be aligned, since the room reverberation and subsequent
deconvolution introduces a shift. The reconstructed signal also had
to be scaled to have the same RMS value as the original clean signal.

T60 0 0.2 0.5 1.0 2.0
SNR(dB) -2.4 3.2 3.3 2.8 1.6

Table 1. SNR improvements as a function of reverb time.

We note that the improvement in SNR is superior to those ob-
tained with technique previously reported by Kameoka et. al. in
[5]. The improvement in SNR is observed to reduce with increasing
reverb time. SNR measurements, however, are highly suspect here.
The RIR introduces an attenuation that must be normalized out by
scaling the signal after dereverberation. Different scaling factors can
result in different SNR estimates. The perceived improvement in
signal quality was typically much greater than that indicated by the
SNRs in Table 1. At reverb times over 0.5 second, it was found
advantageous to dereverberate the data repeatedly assuming an RIR
time of 0.5 seconds each time until the desired RIR was obtained,
instead of only once with the true RIR. For instance, at a T60 time
of 2.0 seconds, repeated application of the algorithm with a dereverb
time of 0.5 seconds resulted in an additional improvement of over
2.0 dB.

More realistic results are obtained by evaluating the data on real
reverberant recordings. In a second experiment, we dereverberated
two real recordings of highly reverberant speech. The first was a



recording of an arabic preacher delivering his discourse in an open
space. The recording was captured by a microphone mounted at a
distance of several meters. Figure 2 show the spectrogram of the sig-
nal before and after dereverberation. For this experiment, since the
reverb time was not known, a reverberation time of 6 seconds was as-
sumed. The second was a recording of a famous Indian play, “Adrak
ke Panje”, which holds the Guinness record for the longest running
play (having run significantly longer than “The Mousetrap”). The
only available recordings for this play, however, were captured in
a highly reverberant auditorium. Figure 3 show the spectrogram of
a sample of this recording, and the dereverberated signal obtained.
Once again, a reverb time of 6 seconds was employed. In both ex-
amples we observe that the dereverberation algorithm significantly
reduces the smearing of the spectrogram that is caused by rever-
beration. Perceptually, we also observe musical noise, introduced
by the enforcement of sparsity which floors some time-frequency
components. Samples of the dereverberated audio may be heard at
http://www.cs.cmu.edu/b̃hiksha/audio/dereverb
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Fig. 2. Left: Spectrogram of two seconds of highly reverberated
speech from our arabic example. Right: Dereverberated version of
the same sample.
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Fig. 3. Left: Spectrogram of reverberant auditorium sample. Right:
Dereverberated version of the same signal.

Multi-channel audio: The multichannel version of the algorithm
was evaluated using synthetic multi-channel data. 11-channel
recordings were obtained by simulating a linear microphone array
with 5cm spacing, in a 12m x 5m x 4m room. The array is cen-
tered 2m from the far wall of the room, and the speaker is 8m from
the array and slightly off center (2.6m and 2.4m from the two walls,
respectively). The image method was used to generate the room re-
sponse.

A T60 time of 2.0 seconds was assumed for the room. Table 2
shows the SNR improvement obtained by dereverberation. In our
experiments below we chose one of the microphones in the center
as the primary microphone (for the 1-channel case), and expanded
symmetrically outward to increase the size of the array.

N. channels 1 2 4 8
SNR(dB) 1.6 1.8 2.4 2.2

Table 2. SNR improvements as a function of the number of micro-
phones.

We note that the improvement in SNR from the dereverberation
increases as the number of channels increases. In particular, the SNR
improvement with 8 microphones was comparable to that obtained

with a delay and sum beamformer on the same data. However, unlike
delay and sum, our algorithm does not require the microphones to be
arranged as a calibrated array, and the room responses observed by
the various microphones can be considerably different.

As stated earlier, the SNR measurements in the above ta-
bles are highly imperfect. The true quality of the results pro-
duced by the algorithm is best judged from the audio samples at
http://www.cs.cmu.edu/b̃hiksha/audio/dereverb

7. DISCUSSION

The dereverberation algorithm is observed to very effective at elim-
inating the smearing that occurs in the spectrogram of a signal as a
result of reverberation. Perceptually, too, the dereverberated signals
sound significantly more crisp than the reverberant signals. Informal
tests show that they are in fact also more intelligible, particularly for
the highly reverberated audio such as that in our arabic and audito-
rium samples. The quality of the signal still leaves something to be
desired though – the dereverberated signals have significant musical
noise. We are currently developing algorithms that compose Wiener
filters from smoothed versions of the dereverberated spectrograms to
eliminate this problem. Also, the imposition of sparsity on the spec-
trograms of the dereverberated signal make them inappropriate for
speech recognition. We believe that the Wiener filter framework will
result in more natural spectrograms that can result in significant im-
provements in recognition accuracy for reverberated speech. We are
also working towards developing alternatives to the entropic prior to
obtain more natural sounding speech.
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