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ABSTRACT

Some recent dereverberation approaches that have been effective for
ASR applications, model reverberation as a linear convolution op-
eration in the spectral domain, and derive a factorization to decom-
pose spectra of reverberated speech in to those of clean speech and
of the room-response filter. Typically, a general NMF framework is
employed for this. In this work1 we present an alternative to NMF
and propose an iterative least-squares deconvolution technique for
spectral factorization. We propose an efficient algorithm for this and
experimentally demonstrate it’s effectiveness in improving ASR per-
formance. The new method results in 40-50% relative reduction in
word error rates over standard baselines on artificially reverberated
speech.

Index Terms— Dereverberation, Spectral Decomposition, Iter-
ative Least-Squares, ASR, NMF

1. INTRODUCTION

The presence of noise and reverberation in speech signals causes
a performance of automatic speech recognition (ASR) systems to
degrade significantly. While effective algorithms for the mitigation
of various types of noise have been proposed and used effectively
in real applications over the past decade, we have seen the emer-
gence of good dereverberation techniques for speech only relatively
recently [1][2][3]. These algorithms different models of reverbera-
tion and operate under different assumptions. In this work we focus
on those techniques that use spectral domain convolutional models
for dereveberation. So far the related approaches reported in the
literature used non-negative matrix factorization (NMF) to decom-
pose the spectra of dereverberated speech into clean speech and of a
room-response filter.

A convolution operation as we know, takes 2 arguments as its
operands, say x[n] and h[n], and results in an output y[n] which
represents the signal obtained by passing x through an linear time-
invariant (LTI) filter with filter parameters h. We mathematically
represent convolution as y[n] ← x[n] ∗ h[n], where the symbol ∗
represents the convolution operation. Convolution jointly maps x
and h to y and this mapping is unique. The deconvolution operation
is the inverse of convolution and can be written as y[n] → x[n] ∗
h[n]. Thus it takes a single argument y as its input and factorizes y
into x and h.

While convolution operation results in a unique solution, de-
convolution typically results in infinitely many solutions. This is
because deconvolution suffers from scaling ambiguity i.e. if x[n]
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and h[n] in y[n] → x[n] ∗ h[n] constitute a valid solution, then
xc[n] = cx[n] and hc[n] = h[n]/c, ∀c 6= 0 also constitute an
equally valid solution. Aside from this scaling ambiguity there is
also an issue of variable assignment i.e. y[n] → h[n] ∗ x[n] is also
a valid solution, so essentially the variables x[n] and h[n] can be
reversed in order in the deconvolved output. If either x[n] or h[n]
is known, the deconvolution operation may have unique solutions.
However, if both x[n] and h[n] are unknown and the problem is un-
constrained, there may be infinity of solutions. In such situations,
we use some knowledge from the physics of the problem to find
an acceptable solution. Some of the successful deconvolution tech-
niques that have been applied for dereverberation are ICA based [4]
deconvolution, which assume that the operands are non-Gaussians
and Wiener-filter deconvolution which minimizes L2-norm which
implicitly assumes a Gaussian-distribution on the error. Recently, as
mentioned earlier in this section, NMF based approaches [5] have
based applied effectively for deconvolution [6] especially for audio
and speech related problems. NMF is further discussed in Sec. 2.4.
In this paper we propose an alternate method for deconvolution. Our
method is an iterative least-squares error minimization technique
that works in the magnitude spectral domain.

The rest of the paper is arranged as follows. In Sec. 2.2 we de-
scribe our ITD approach in detail. In Sec. 3 we discuss issues related
to its computational efficiency. In Sec. 4 we present our experimental
results using ITD and finally in Sec. 5 we present out conclusions.

2. ITERTIVE DECONVOLUTION (ITD) FOR SPECTRAL
FACTORIZATION

In this section, we present the details of our proposed approach for
spectral deconvolution based dereverberation for ASR.

We define Xs[n, k] and Ys[n, k] as respectively the clean and
reverberated spectra with Hs[n, k] being the filter spectra represent-
ing the spectra of room-response filter. n is a frame index and k is
an index to a particular narrow-band or a sub-band frequency chan-
nel. The dereverberation problem for ASR is to infer the spectrum
of the clean signal i.e. Xs from the observed Ys. We thus seek the
following decomposition:

Ys[n, k] → Xs[n, k] ∗Hs[n, k] (1)

and formulate a least-squares solution to it as

E =
∑
i

(
Ys[i, k]−

∑
m

(
Xs[m, k]−Hs[i−m, k]

))2

(2)

We now discuss how we can derive a least-squares formulation for
the solution of (2).



2.1. Interpretation of Convolution in terms of Matrix Multipli-
cation

The convolution operation in (2) can be expressed as a matrix oper-
ation in order to derive a least-squares formulation for the iterative
minimization of the error. Note that initialization is an important as-
pect of this solution. Starting from initial estimates of either Xs or
Hs, we iteratively obtain updated values of these variables, until a
convergence criterion is achieved. We illustrate the above with the
following example. Consider a simple convolution operation:

Y = X ∗H (3)

where, X = [x0 x1 x2]
T , H = [h0 h1]

T , and Y = [y0 y1 y2 y3].
The convolution operation in (3) can be equivalently expressed in
terms of the following two matrix operations

Y =



x0 0
x1 x0

x2 x1

0 x2




︸ ︷︷ ︸
TX

H =



h0 0 0
h1 h0 0
0 h1 h0

0 0 h1




︸ ︷︷ ︸
TH

X (4)

Note that in in (4) TH is a Toeplitz matrix of size Dim(Y ) ×
Dim(X), similarly HX is a Toeplitz matrix of size Dim(Y ) ×
Dim(H), where Dim(Y ) indicates the dimensionality of the Y
vector.

2.2. Iterative Least Square Deconvolution

We now build on our matrix perspective of convolution as in (4) to
arrive at an iterative solution for estimating Xs and Hs jointly given
an initial estimate of either Hs or Xs.

In order to do this, we rewrite the convolution in (1) as a matrix
operation as follows

Ys[., k]︸ ︷︷ ︸
Yk

≈ TXs[.,k]︸ ︷︷ ︸
TXk

Hs[., k]︸ ︷︷ ︸
Hk

, Ys[., k]︸ ︷︷ ︸
Yk

≈ THs[.,k]︸ ︷︷ ︸
THk

Xs[., k]︸ ︷︷ ︸
Xk

(5)

where, TXs[.,k] is a Toeplitz matrix consisting of elements from
Xs[., k]. For brevity, in the rest of this paper we will refer to X[., k]
as Xk. Note that the TXk is a matrix of size Dim(Yk)×Dim(Hk).
Similarly Hs[., k] is equivalently written as Hk. THk is a Toeplitz
matrix, consisting of elements from Hk, and is of size Dim(Yk) ×
Dim(Xk). Our goal is to use (5) to obtain a factorization for Yk in
terms of Xk and Hk.

Given an initial estimate of either Hk or Xk, the spectral factor-
ization in (1) can be solved by least-squares error optimization using
the framework in (5). Starting with an initial estimate for say, Hk

we can obtain an updated X̄k in the following manner:

X̄k = argmin
Xk

((Yk − THkXk)
T (Yk − THkXk))

= (TT
Hk

THk )
−1TT

Hk︸ ︷︷ ︸
T+
Hk

Yk

H̄k = (TT
X̄k

TX̄k
)−1TT

X̄k︸ ︷︷ ︸
T+
X̄k

Yk

(6)

where, T+
Hk

is the pseudo-inverse of THk . In a manner similar to the
X̄k updates, we can obtain updated values of H̄k = T+

X̄k
Yk. Note

that for updating Hk, we use X̄k. In practice, the algorithm may
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Fig. 1. Iterative Deconvolution (ITD) in sub-band frequency domain.

start with an initial estimate of either Hk or Xk. We will discuss
the initialization of Hk and/or Xk in more detail later in this section.
If say the algorithm starts with an estimate for Hk, then we first
evaluate the Toeplitz matrix THk , and using (6), we obtain X̄k. The
algorithm then reiterates using the X̄k as an initial estimate to obtain
H̄k, and repeats.

Note that thus far the methodology proposed above applies to
any generic deconvolution problem. Since our goal is use this al-
gorithm specifically for dereverberation of speech signal through a
representation in the magnitude/power spectral domain, we enforce
the constraint that the constituent spectra being non-negative. Thus,
our goal is to arrive at a non-negative decomposition and to this end,
we floor the potential negative values in X̄k and H̄k to a small posi-
tive constant.

2.3. Proof of convergence

We now show that the above method is guaranteed to converge. Note
that since the error criterion represented by (2) is quadratic this also
implies that the method will converge to a globally optimal solution.
Assuming that we begin iteration of the algorithm with an initializa-
tion for say Hk and consequently iteratively obtain X̄k and H̄k to
complete one iteration of the algorithm, it is trivial to show that

L2(Yk−Xk∗Hk) ≥ L2(Yk−X̄k∗Hk) ≥ L2(Yk−X̄k∗H̄k) (7)

where, L2 is the standard mean squared-error metric. The inequality
in (7) holds since the updates X̄k and H̄k are obtaining by mini-
mizing the squared-error metric in (6). Thus, the iterative algorithm
guarantees error minimization at each iteration. Further, since the er-
ror function is convex in its argument, each of the individual updates
are guaranteed to be their global best solution.

Note that while the above proves that the algorithm is guaran-
teed to reach a global optimum, the optimum itself is only for the
error and not for the individual values of Xk and Hk. The estimated
values for these depend on the initialization used. Initialization is
therefore an important aspect of the proposed algorithm and we will
next consider this in detail.



2.4. Non-Negative Matrix Factorization based Initialization

As discussed above, our deconvolution approach requires a good ini-
tialization. This is especially important for speech dereverberation
in ASR because we want to get realistic solution for the spectra of
the clean signal Xk. In order to obtain realistic values of Xk it is
obviously necessary to initialize the algorithm with realistic values
of Hk. We therefore use an estimate of Hk that we obtain from an
initial NMF decomposition procedure. Note that this procedure is
only used for initialization (which could be replaced by any other
procedure that could give a realistic initial value for Hk). Our ITD
algorithm itself does not incorporate NMF in its solution.

NMF solves the deconvolution problem by imposing non-
negativity of the spectra as a constraint to guide the optimization.
Optionally a sparsity constraint can also applied on the resulting
Xk. We will only list the NMF updates here and refer the reader to
[7] for further details. The NMF update equations for Hk and Xk

are as follows:

X̄k[n] ← Xk[n].

∑
i Yk[i]Hk[i− n]∑

i Yk[i]Hk[i− n] + λ

H̄k[n] ← Hk[n].

∑
i Yk[i]Xk[i− n]∑
i Yk[i]Xk[i− n]

(8)

where, λ is an optional sparsity parameter.

2.5. Overall ITD Approach

We present the overall ITD based factorization in Fig. 1. We obtain
the spectra of the reverberated signal in the conventional manner. We
first preemphasize the time domain signal and window it. We then
perform the FFT transform on the windowed signal. The ITD de-
composition can be applied on these signal spectra. However in our
prior experiments [7], we found that the decomposition algorithms
give better result for ASR when we apply the ITD to sub-bands in the
Gammatone frequency domain. Working in the Gammatone spectral
doain also reduces the computational and logistic requirements.

Accordingly, in our work we applied ITD in the Gammatone
spectral domain. After ITD processing is done, the signal is re-
constructed after an inverse Gammatone transformation. If ASR is
to be performed on the resulting speech signal, we compute mel-
frequency cepstra (MFC) from the reconstructed signal. In the next
section, we discuss computational issues relating to ITD in detail.

3. COMPUTATIONAL OPTIMIZATION

In this section we propose two strategies for computational cost and
memory saving in the implementation of the algorithm proposed in
Sec. 2.2. In one strategy we achieve substantial saving in computa-
tion (thereby achieve greater computational efficiency) by efficiently
evaluating the two matrix products TT

Hk
THk , and THkYk in (6). In

the second strategy a significant improvement in speech is obtained
by utilizing the Toeplitz property of the matrix in (6) which allows
us to use the Levinson recursion.

3.1. Avoiding Direct Matrix Inversion and using Correlations

A naive approach for obtaining the updates in (5) would be to start
with a given Hk, build a Toeplitz matrix THk , and obtain the pseudo-
inverse T+

Hk
explicitly. After this an updated X̄k would be obtained.

The cost of this explicit matrix inversion is O(N3) for a square ma-
trix of size N×N . Since the objective in (5) is only to obtain X̄k, we

can avoid the explicit matrix inversion by reformulating the solution
in (5) as follows:

TT
Hk

THkX̄k = TT
Hk

Yk, TT
Xk

TXkH̄k = TT
Xk

Yk (9)

which can be solved using Cholesky decomposition in O(N3/3).
This represents a significant saving over the naive pseudo-inverse
based approach in (6).

The approach in (6) still requires building THk , TT
Hk

THk and
THkYk matrices sequentially. This incurs substantial computational
cost, which we can optimize by directly obtaining the products
TT
Hk

THk and THkYk without having to first build the Toeplitz ma-
trix THk . We can do so by observing that the product TT

Hk
THk is

the standard autocorrelation matrix of Hk, and that THkYk is be a
vector of the coefficients of the cross-correlation of Hk and Yk. For
later use, we rewrite (10) as follows:

ΦHkX̄k = PHkYk , ΦX̄k
H̄k = PX̄kYk

(10)

where the matrices ΦHk , ΦX̄k
respectively comprise the correlation

coefficients of Hk and X̄k; and the matrices PHkYk and PX̄kYk
re-

spectively comprise the cross-correlation coefficients. Specifically,
PHkYk [m] =

∑
i(Yk[i]Hk[i − m]). Thus, using correlation and

cross-correlation terms, we can avoid building the giant THk matrix
consisting of Dim(Yk) × Dim(Xk) number of elements. Instead
we can work with just Dim(Xk) correlation coefficients for Hk and
Dim(Yk) cross-correlation coefficients between Hk and Yk.

3.2. Levinson Recursion

A naive solution for (10) can be obtained through Gaussian-
Elimination or Cholesky decomposition, but ΦHk is a Toeplitz
matrix consisting of only Dim(Xk) unique elements. This makes
it suitable for the use of Levinson recursion for solution of the
least-squares problem in (10). We refer the reader to [8] for specific
details of this method and simply give an outline here. The computa-
tional complexity of Levinson recurion is O(N2) which represents
a significant saving over O(N3/3) computations required by the
Cholesky decomposition.

The Levinson recursion approach is as follows. For a given
(N×N) Toeplitz matrix TN , the aim of the recursion is to build the
following forward and backward vectors

TNfN = eNf , TNbN = eNb (11)

where fN and bN are vectors of length N and are respectively re-
ferred to as forward and backward vectors. eNf and eNb are also vec-
tors of length N and eNf = [1 0 · · · 0︸ ︷︷ ︸

N−1

]T and eNb = [0 · · · 0︸ ︷︷ ︸
N−1

1]T .

The algorithm is initialized with a sub-Toeplitz matrix T 1, which is
in fact a single element TN (1, 1), for which f1 = b1 = 1/T 1, triv-
ially. From this initialization the algorithm evaluates f2 and b2 and
upto fN and bN . The algorithm then recursively solves the linear
least-squares solution for (10) using the backward vectors [8].

4. EXPERIMENTS AND RESULTS

We conducted several experimets to test the effectiveness of the pro-
posed ITD algorithm 2. in improving the performance of a speech
recognition system. In all experiments, we artificially reverberated

2Software will be available at
http://www.cs.cmu.edu/ ˜robust/archive/algorithms/ITD ICASSP2010/
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Fig. 2. Residual reconstruction error in ITD factorization.
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Fig. 3. WER comparisons for ITD. All of the systems include CMN.

data from a standard clean speech database – the Darpa Resource
Management (RM) database available from the Linguistic Data Con-
sortium. We used several RT values which are shown in Fig. 3. The
reverberated speech signals were then dereverberated using the ITD
algorithm, and other available algorithms for comparison. Features
for ASR were then extracted from them.

Details of the ASR setup are as follows: the ASR system we
used was the CMU Sphinx-3 opensource speech recognition system.
We trained the system on clean speech and tested its performance on
dereverberated speech. The test data were different from the training
data in all the cases, and were the designated training and test sets
in the RM database. The acoustic models were all 3-state left-to-
right Bakis topology HMMs with no skips permitted between states.
Each state output distribution was modeled by a mixture of 8 Gaus-
sians. The total number of tied states used was 1000. The language
model used was a standard bigram model for the RM task, built in-
house using the CMU Language modeling toolkit. The features used
were conventional MFC features augmented by delta and double-
delta cepstra. Each full feature vector was 39-dimensional. Cepstral
mean normalization (CMN) was applied in all cases.

ITD processing for dereverberation was done exactly as shown
in Fig. 1. Fig. 2 presents the improvement in the residual reconstruc-
tion error achieved with the proposed ITD technique. The ITD pro-
cess was initialized with the NMF algorithm in [7] and run for 5 iter-
ations. Fig. 2 shows that applying ITD updates on NMF-initialized
estimates for the filter spectra reduces the residual reconstruction er-
ror in (1) by 78% in 5 iterations.

In Fig. 3 we plot word error rates (WER%) results across a num-
ber of competitive feature extraction systems and dereverberation
algorithms. This figure shows results for clean-condition training,
where the ASR system is trained with clean speech and tested on
dereverberated speech. Results show that reverberation is difficult to
compensate for, even using advanced baseline systems, in a manner
that is conducive to speech recognition. Even the Advanced Front-
End [9] system does not lead to improvements in performance for
ASR on reverberated speech. Long-term log-spectral subtraction
(LTLSS) [10] algorithm is a direct extension of CMN processing,
where CMN processing is applied to longer analysis windows (1-2
s), and speech is reconstructed in an analysis-by-synthesis frame-
work. LTLSS provides 15% reduction in WER over MFCs. The
ITD algorithm provides 54% relative reduction WER at RT-300 ms,
which is substantially better than any of the baseline algorithms. We
also note that the ITD approach builds on the NMF approach, and
improves it by 16% relative.

5. CONCLUSION

The least-squares decomposition technique proposed in this paper
works well for ASR. Deconvolution is generally difficult to solve, es-
pecially if none of the constituent convolutive components are given,
and we only have the observed convolved signal. In such situations,
realistic constraints that relate to the physics of the signal of inter-
est must be provided. Our use of NMF for initializing the room-
response filter spectra is motivated by this. Also, the use of this
algorithm in the Gammatone filtered magnitude spectral domain is
driven by our current understanding of speech and ASR. If the con-
straints are reasonable, the ITD approach can apply to any generic
deconvolution problem. In our ASR experiments it resulted in 40-
54% relative reduction in WER over other baseline processing in RT
ranges of 300-500ms. This is a significant improvement in perfor-
mance.
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