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ABSTRACT

This paper suggests the use and debates the appropriateness of Mere-
ology for the study of real world sounds. Mereology is a formalism
in mathematical logic that describes the universe in terms of parts
and the wholes that are formed by the parts. This is in contrast with
set theory, within which the universe is described as objects and the
groups they belong to. Classification and traditional machine learn-
ing fit well into the description of the universe as a set of objects and
their associated properties. In the case of sound, however, pieces of
sound can extend and morph in time and frequency to form other
recognizable sound entities without having clear partitions in the set
theoretic sense. Our reasoning is that by treating sounds as com-
posed entirely or parts, and wholes that are formed by parts, it may
become easier to formalize the descriptions, mathematical manipula-
tions and real-world interpretations for the universe of sounds. This
paper is neither an exhaustive thesis on this subject, nor does it es-
tablish any formal system of Mereology for sound. The goal of this
paper is to merely show that there are some promising possibilities
with existing Mereological formalisms for manipulating the world
of sounds differently, and perhaps more easily.

Index Terms— Audio objects, Mereology, General Extensional
Mereology, Acoustic space, Mereological algebra

1. INTRODUCTION

In audio processing, set-theoretic formulations and algebras have
sufficed very well for manipulating sounds. Successful procedures
and methodologies for sound processing have been established based
these, such as those for the classification, detection, retrieval, cate-
gorization and description of sounds, expression of sounds based on
compositional models, automatic discovery of compositional units
of sounds, etc. However, in spite of its many successes, there remain
open problems in the field that have evaded solution for decades.
For instance, it is difficult to precisely define a taxonomy for sounds,
much less compute one, because a taxonomy for sound is de-facto
based on human perception, which is highly subjective. Notions of
objects, events etc. are discussed in the context of sound, but there
is no precise definition of a sound object or event, or for that matter
for other common terms used in the description of sound, such as
soundscape, composition (noun) etc.

Let us take the example of a sound object. For a long time,
the problem of defining a sound object has evaded a clear answer.
This is because the majority of real-world sounds, as perceived by
the human ear, take on a distinct semantic meaning as an emergent
property of a collection of other sounds. A classic example is the
sound of rain. What properties of rain cause it to be identified as
a sound object? In other words, what is the sound object that is
semantically identified as rain? If we try to localize it in time, we

may say that the shortest duration of the sound that becomes inter-
pretable as rain is the “rain” object. But this is a very subjective
definition since it depends on human interpretation of the semantic
meaning of a sound snippet from rain sound. If we try to define it
based on its frequency content, then an instantaneous spread of such
frequencies is possible in random noise, and rain merely becomes
one of the infinite possible renditions of random noise. Attempts at
spectro-temporal definitions of rain meet with similar challenges. A
strictly physical view of the phenomenon, as a collection of sounds
of water drops, is again faced with similar challenges. The sound
could be completely different when the drops fall on a tin roof or
an asphalt road. Then the instantaneous frequency content must be
discarded as evidence, and the temporal incidence of (many of) the
individual sound objects of “water drop falling on something” must
be considered. If there are N distinct sounds heard in time T , then it
must be rain. What shouldN be and what should T be? The answers
vary with people who attempt to answer the question. Then there is
the question of the word “something” in the definition of rain as “a
collection of sounds of water drops falling on something”. There
are potentially infinite things on which water drops could fall. Do
we refer to a carefully constructed compendium of these things, and
the resulting sounds? What happens when the physical dimensions
of these things change? The sounds may have different properties
that are a function of the dimensions of the object on which the wa-
ter falls. As we extend these thoughts, we quickly see that defining
what we recognize easily as the “sound of rain” is an arbitrarily hard
problem.

Surprisingly enough, on closer inspection, the problem can actu-
ally be viewed in mathematical terms. The fundamental issue here is
that of quantification. While we can state confidently that raindrops
form rain, we find that we cannot quantify the boundary. Exactly
how many raindrops comprise rain? Does every drop form rain? The
only statement we can actually make is that of parthood – “raindrops
are part of rain”, or “rain is that of which raindrops are part”.

The notion of unquantifiable parthood extends beyond distinct
physical events such as raindrops and rain. It pervades the definition
of sounds. The most obvious examples are clearly identifiable com-
posite sounds in which components may themselves be identified,
e.g. clapping and screaming sounds are part of cheering, individual
instruments build up music sounds, footfalls make up the sound of
running, etc. But both lower- and higher-level semantic concepts too
are built on parthood, for instance sound textures such as the sound of
running water comprise components such as lapping sounds of wa-
ter, and soundscapes such as railway stations include human speech,
train sounds, and a variety of other components.

The notion of parthood in sounds can have several interpreta-
tions. Parthood can be temporal e.g. footsteps following one after
another represent walking or running, structural (e.g. the compo-
sition of musical chords by notes, or that of traffic by automotive
sounds), or conceptual (e.g. chirping is an instance of bird sounds).



Each of these notions of parthood has generally been recognized in
the description of sound ontologies, e.g. [1], which attempt to cate-
gorize sound in terms of various parthood-like relationships.

Traversing the other direction in parthood is the notion of atom-
icity – what parts constitute a given sound. Sounds can be recur-
sively “decomposed” into smaller and smaller units, e.g. rain can
be decomposed into drops, drops can be decomposed into smaller
temporal units, which can in turn be decomposed into individual fre-
quency components and so on. The recursion potentially continues
until the units can no longer be identified as sound.

Conventional arithmetic is built on the foundations of axiomatic
set theory [2], through which all familiar mathematical entities and
concepts including number systems, and notions of groups, parts and
belonging are all specified. However, set-theoretic formalism is fun-
damentally based on the notion of collections, rather than parthood.
It is built upon a number of axioms, each attempting to arrive at a
more precise, and hence more universally applicable mathematics;
however many of these do not naturally apply to the human-defined
notion of the relationship of sounds and their constituents, which,
as explained earlier, is based on unquantified parthood, although the
notion of such parthood can be derived through appropriate manipu-
lations of set-theoretic definitions.

In this paper, we propose that mathematical definition of the re-
lationships between sounds may be easier if we move away from
set-theoretic constructs, and employ Mereological algebra, a mathe-
matical formalism built explicitly upon the notion of parthood. From
these, additional notions such as “overlap”, “underlap”, and vari-
ous forms of composition can be mathematically developed. Differ-
ent axiomatic constructions of related mathematics can then be built
upon these fundamental definitions. Depending on the specific set
of axioms chosen to compose the entire algebra, the algebra may or
may not include such notions as fundamental atomic units, null ob-
jects, or universal sets. As such, it has sometimes been argued that
Mereology represents a more basic algebra from which set-theoretic
algebra can itself be constructed [3].

From the perspective of analysis of sound, the definitions and
axioms of Mereology are uniquely appropriate. Parthood, overlap,
underlap, compositionality etc. are all fundamental aspects of sound.
An appropriate selection of axiomatic construction of the algebra
can also induce other percepts, for instance, an axiomatic formal-
ism that does not invoke the existence of fundamental atomic units
lends itself to descriptions of sound where physical or conceptual
decomposition can be recursive. Arithmetic operations in Mereo-
logical algebras too lend themselves to more intuitively acceptable
definitions than corresponding operations in set-theoretic algebras.
For instance, the Mereological sum of two objects is generally de-
fined as a new object within which both constituent objects continue
to exist as parts. This has a perfect analog in the world of sounds,
where the superposition of two sounds is generally a constructive
composition within which the component sounds continue to exist.
Thus, by appropriate definition of mappings between Mereological
entities and sound “concepts”, it becomes feasible to arrive at an al-
gebra in which definitions, concepts and operations may be more
appropriate for inferencing within the acoustic space.

This paper is intended to be a brief overview of Mereological
concepts and axiomatic constructions, and to Merelogical Systems
(first-order theories derived from the primitives). We explain how
some of these concepts may be applied to the description of sound
and show through examples why some systems and extensions of
Mereology may be better suited to describe sound than others. We
also present an example of a proposed extension that may be used to
make some basic inferences.

2. MEREOLOGY AND MEREOLOGICAL SYSTEMS

Mereology [4], a term derived from the Greek word µερoς , meaning
part, is a mathematical formalism that is built around the notion of
entities being parts of wholes. In totality, it is often viewed as one of
the alternative formalisms to set theory, which is based on relations
between sets and its members. A good example of such an alter-
native formalism (to Set theory) is Type theory, which finds use in
programming logic.

Note that the meaning of “part” in this context and others is it-
self deeply debated, but since our goal is to eventually focus on the
specific domain of sounds, and since the notion of part as applied to
sound can be well specified, we need not discuss this aspect at the
outset.

2.1. Definitions

The basic predicate or primitive in Mereology is the notion of some-
thing being a part of another: aPb, meaning a is part of b. This is the
primitive of parthood. Various related definitions follow naturally.
Def 0: Parthood: aPb – a is a part of b

Parthood describes a partial order, where the equivalent of a “ď”
is allowed, but an order relationship between every pair of entities is
not guaranteed, i.e. such a relationship may be defined only between
some pairs. In other words, if aPbPc, then the order relationship
specifies that aPc, but does not necessarily imply that for some other
entity x, a and x have any part relationship.

The following definitions can then be based on Parthood. Some
of these can be predicates for different systems of Mereology (sys-
tems are explained later in this section):
Def 1: Proper parthood: aPPb – paPb ^ bPaq

In the expression above, a is by definition a proper part of b.
Proper parthood also partially orders the universe, but represents
a strict partial order, where only the equivalent of “ă” is allowed,
rather than “ď”. There are (in turn) two definitions based on Proper
parthood:
Def 1.1: Universe: Includes all entities and their proper parts. :
κ – @apaPPκq

Def 1.2: Atom: An entity lacking proper parts : Aa – @bp bPPaq

Def 2: Equality: aEb –a Pb ^b Pa
Def 3: Proper Extension: aPEb –b Pa ^ a “ b

Def 4: Overlap: aOb Ø DxpxPa ^x Pbq

Def 5: Underlap: aUb Ø DxraPx ^b Pxs

2.2. Systems

2.2.1. Classical Mereology

Depending on the predicate and axioms around which a Mereolog-
ical formalism is built, different systems of Mereology have been
proposed in the literature, e.g. [5, 6, 7, 8]. The formalism for classi-
cal Mereology, often denoted as M in the literature, is based on the
predicate of Parthood and on the following three basic axioms:

Axiom1: Reflexivity: aPa
The Axiom of reflexivity defines an object as (also) a part of

itself, and therefore it is possible to compose an object that comprises
all objects that are not themselves. Note that in classical set theory
this results in Russel’s paradox. In Mereology, this is not the case.
Axiom2: Antisymmetry: paPb ^b Paq Ñ a “ b

Axiom3: Transitivity: paPb ^b Pcq Ña Pc



2.2.2. Extensions of Mereology

Mereological formulations differ with the primitives or predicates
used to develop them, as stated earlier. Some extensions of Mereol-
ogy use Overlap as a predicate [9] (here the primitive for parthood
is defined from Overlap as : aPb Ø @xpxOa Ñx Obq, the sys-
tem is called Classical Extensional Mereology). Examples of others
are Rough Mereology: [10, 11], Mereologies with Disjointness [12]:
aDb –  aOb, Identity: a “ b Øa Eb, or Indiscernability, which
is defined in terms of any function ψ as: aEb Ñ pψaØ ψbq

Systems and extensions of Mereology are relatively simple to
understand in concept. The classical version of Mereology M is
centered around Axioms 1-3. It may be extended based on either the
principles of Decomposition or the principles of Composition. The
former describes methods for deriving parts from wholes. The latter
describes methods for describing the whole in terms of parts. The
former embodies the notion of a Mereological difference, namely
that when a whole has a proper part, then there is always something
that is not that proper part, which is the difference or remainder be-
tween the proper part and the whole. The latter embodies the notion
of a Mereological sum, namely that when there are entities, there al-
ways exists another entity that is a fusion of those entities and com-
prises precisely those parts.
Extension based on Decompositions in M : The principle of de-
composition is embodied in the axiom of Supplementation:
Axiom 4: Supplementation: aPPb Ñ DxpxPb ^ xOaq

or alternatively (depending on reflexivity and symmetry)
Axiom 4: Proper supplementation: aPPb Ñ DxpxPPb ^ xOaq

This specifies that in every whole that has a proper part, the
proper part must be supplemented by a different disjoint part.

Conventionally, when M is extended in this manner by the addi-
tion of the axiom above, the resulting Mereology based on Axioms
1-4 is called Minimal Mereology, denoted conventionally as MM.

The strongest expression of Supplementation in M is the follow-
ing:
Axiom 5: Strong Supplementation:  bPa Ñ DxpxPb ^ xOaq

This is considered strong because it states that if a description of
a whole fails to include all parts, then there must be one or more parts
that account for the difference of the two. This is also referred to as
extensionality, and its mainstay is that it excludes the existence of
distinct objects with the same proper parts. The Mereology resulting
from the inclusion of Axioms 1-5 is called Extensional Mereology
or EM. One of the key theorems in EM mandates that if two objects
have the same proper parts, they cannot be different or distinguish-
able. This is stated as:
Theorem EM1: Indistinguishability: pDx xPPa _ Dx xPPbq Ñ
pa “ bØ @xpxPPaØx PPbqq

An even stronger way of expressing Supplementation is through
Complementation:
Axiom 6: Complementation:  bPa Ñ Dx@ypyPx Ø pyPPb ^
 yOaqq

In other words, if b is not part of a then parts of b exist that are
disjoint from a and comprise the complement of b and a. Note that
the complement is also the difference between a and b.

The definition of Atom mentioned earlier is in fact also included
under Decomposition principles. Atoms do not overlap, and are al-
ways disjoint from each other. There are two axioms that embody
the notions that all wholes are composed of atoms, and that no atoms
exist. These are:
Axiom 7: Atomicity: DapAa ^a Pbq
Axiom 8: Atomlessness: DapaPPbq

Depending on the acceptance of these two Atomistic viewpoints,
a Mereological system may be bifurcated into an Atomic version,
and an Atomless version. Thus we may have a system AX, a ver-
sion of X that also incorporates Axiom 7, or ÂX, a system that in-
corporates Axiom 8. Needless to say, no system incorporates both
Axioms.

Other axioms based on decomposition principles are the follow-
ing:
Axiom 9: Density or Dense ordering: aPPb Ñ DxpaPPx^xPPbq
Axiom 10: Bottom: Da@bpaPbq

Axiom 10 is in fact based on the assumption of a Null entity, that
is a part of everything. This is not compatible with Axioms 4 and 7.

Extension based on Compositions in M As mentioned earlier,
a second way of extending Mereologies is based on compositional
principles.

Compositional extensions lead to sums, products, differences
and other operations that are closed. We begin with the Axiom of
boundedness.
Axiom 11: ξ-bound: aξb Ñ DxpaPx ^b Pxq

This can also be interpreted as an overlap between a and b. ξ is a
weak rule of Composition, and is trivially satisfied if a universal en-
tity exists of which any entity is a part: Db@apaPbq. A stronger Com-
positional rule is given by the notion of Sum, which is defined with
reference to Underlap between parts of a whole. Given a require-
ment of minimal Underlap, the Sum or Fusion of parts is the (larger)
part of a whole that is entirely composed of the given parts. There
are multiple ways of defining a Sum. Regardless of the manner in
which it is defined, the condition can be expressed as the following
axiom:
Axiom 12: ξ-Sum: aξb Ñ @xpxSabq

x is the Sum of a and b. The most widely used definition of the
Mereological Sum is:
Def S: xSab – @ypxOy Ø pyOa _y Obq

This definition allows the Fusion of a finite number of objects,
and asserts that if any two objects Underlap, then they have a unique
Sum. The Sum is the set-theoretic analog of a Union.

Let us define
Def 6 : a` b – ιx xSab

where ι is a definite descriptor for S. It has been shown that the
sum operator (`) is idempotent, commutative and associative and
thus follows the rules of Boolean algebra [13]
a “ a` a (Idempotent)
a “ a` b “ b` a (Commutative)
a “ a` pb` cq “ pa` bq ` c (Associative)

It is also well-behaved with respect to Parthood:
aPpa`bq
aPb Ña Ppb`xq pa`bqPx Ña Px aPb Ø a` b “ b

Similar to the notion of Sum, Mereological extensions based on
Compositional principles also give us a notion of Product. This is
based on the assumption that an Overlap exists between entities.
When based on any additional assumption ξ, the Product must hold
at least as strongly as with the Overlap assumption.
Axiom 13: ξ-Product: aξb Ñ Dx xRab, where
Def 7: Product: xRab – @ypyPx Ø pyPa ^y Pbqq

If aOb does not hold, a and b have no parts in common, and the
product of a and b is undefined. The axiom of product also spec-
ifies that any two overlapping objects have a unique product. The
Mereological analog of Product in set theory is the concept of inter-
section of sets. In addition, the axiom of product is applicable only
to a finite number of entities, unless unrestricted fusion (see below)
is assumed, in which case the Product of infinitely many entities is
specified.



As in the case of Sum, if we introduce a binary operator for
product as
Def 8: aˆ b – ιx xRab

we find that the product is idempotent, associative and commu-
tative, and is also distributive with respect to the sum operator.

a` pbˆ cq “ pa` bq ˆ pa` bq

aˆ pb` cq “ paˆ bq ` paˆ bq

Axiom 13 supports Compositional principles indirectly by
showing the existence of shared parts that comprise a whole.

One strain of Extensions based on Compositional principles
uses infinitary sums and bounds to give much stronger composi-
tions. These are formulations that generalize to any formula φ and
any condition ψ within any specific context:
Axiom 14: General ψ-bound: pDy φy ^ @ypφy Ñ ψyqq Ñ
Dx@ypφy Ñy Pxq

Axiom 15: Generalψ-sum: pDy φy^@ypφy Ñ ψyqq Ñ DxpxSφyq

where the sum is redefined as
Def 9: Generalized sum S: xSφy – @bpbOx Ø Dypφy ^b Oyq

The generalized sum S is also called Unrestricted fusion, If φa
is a first order formula with a as a free variable, then the fusion of all
objects satisfying φ exists, i.e., Dypφyq Ñ Dx@bpbOx Ø Dypφy ^b
Oyqq

A Universal object is also sometimes designated as Top.
A Generalized product could be similarly defined as

Axiom 16: General ψ-Product: pDyφy ^ @ypφy Ñ ψyqq Ñ
Dx xRφy

where the product is now defined as
Def 10: General Product: xRφy – @bpbPx Ø @ypφy Ñb Pyqq

2.2.3. General Extensional Mereology

The core Mereology M described above is based on the predicate
of Parthood. However, Parthood can be defined in terms of Proper
parthood: aPb Ø paPPb _ a “ bq

This implies that Proper parthood can also be used as a predicate
for the development of Mereology. This forms the basis for General
Extensional Mereology. GEM is obtained as an extension of EM
with Axiom 15, except that in this case it not restricted by the bound
ψ.
Axiom 15.1: Unrestricted Sum: Dyφy Ñ Dx xSφy

Based on the assumptions of Atomicity or Atomlessness, we
could generate two different formalisms of GEM, namely AGEM
and ÂGEM. An important outcome of Atomicity in AGEM is that,
in a collection of entities, there exists a sum S, that is composed en-
tirely of the Atoms in the entity. This replaces the Unrestricted sums
of Axiom 15.1 by the simpler Axiom of Atomistic sum
Axiom 15.2: Atomistic sum: Dyφy Ñ DxSxpAb ^ Dypφy ^b Pyqq

In 2006, Pontow and Shubert [14] showed that one could con-
struct a full Boolean algebra if one extended GEM by adding Axiom
10 to it and replacing Axioms 5 and 15 with the Axioms of Genuine
Strong supplementation and Genuine Unrestricted sum:
Axiom 5G: Genuine strong supplementation:  bPa Ñ DxpxGPb^
 xGOaq

Axiom 15.1G: Genuine unrestricted sum: Dyφy Ñ Dx@bpxGOb Ø
Dypφy ^y GObqq

where the word Genuine implies that the trivial case where
something is satisfied merely when the Null part or entity are in-
voked gives way to genuine non-trivial cases where the Null entity
need not be invoked.

3. MEREOLOGICAL DESCRIPTIONS OF SOUND

3.1. Definitions

It is easy to see that the basic definitions of Section 2.1 directly apply
to descriptions of sound.

• Parthood: As explained in some detail in Section 1, parthood
is a fundamental concept in describing the relationship be-
tween different sounds. Parthood may be temporal, structural,
or conceptual. Proper parthood follows naturally – sounds
which are parts of other sounds, but are not that sound itself
are proper parts. The sound of water drops is a proper part of
the sound of rain. Parthood also provides a partial ordering
for sounds.

• Overlap: Sounds may overlap in time, structure (e.g. by hav-
ing similar structural characteristics), or in concept (e.g. dif-
ferent birdcalls overlap in concept).

• Underlap: Component sounds of larger sound objects or
concepts underlap. Thunder and raindrops underlap. Differ-
ent bird calls underlap.

Other definitions follow naturally. Two sounds may be said to be
equal if they are the same sound, either physically or in concept. This
is well defined by the Mereological definition of equality. An exten-
sion is the counterpart of parthood. The sound of thunderstorms
extends the sound of thunder.

The notions of atoms and a universe are less distinct. Sound
Mereologies may be defined atomlessly, without explicit definition
of atomic units of sound. Alternately, a lowest-denominator set of
atomic sounds may be defined e.g. [15] as the basic units that all
sounds are eventually composed of, to result in atomic Mereologies.

3.2. Axioms

The actual Mereological system used to model a domain depends
on the specific set of axioms chosen. It is easy to see that the three
basic axioms of Mereology, namely reflectivity, antisymmetry and
transitivity directly apply to sound.

Consider now the axioms of compositionality. Axiom 4, accord-
ing to which a whole cannot be composed entirely of a single proper
part, is seen to apply directly to sounds. To illustrate, rain is a proper
part of thunderstorms. Thunderstorms must include other compo-
nents besides rain to be thunderstorms, e.g. the sound of thunder.
Thus minimal Mereologies (MM) are generally applicable to defini-
tions of sound.

Axiom 5 excludes the existence of different objects with the
same proper parts. Using a temporal definition of parthood, sounds
that are identically built from proper parts cannot be semantically
different. Under this definition, Axiom 5 clearly applies to sound,
but not necessarily under other definitions of parthood. Thus exten-
sional Mereologies (EM) apply under temporal definitions of part-
hood.

While Axiom 6 (complementation) arguably applies universally,
Axioms 7 and 8 are contradictory and the choice depends on whether
we accept the notion of atomicity or not in our definition of sounds.
Both views are applicable under different scenarios and different ex-
tensions can be designed from these starting points. We will gener-
ally not accept the existence of a universal null entity in the world of
sound. It must be noted that silence is not a null entity – even silence
has temporal extent.

The axioms relating to the compositional extensions are relat-
able to sound. In particular, the definition of addition as fusion is



intuitively appealing. The sum of two sounds is generally the fusion
of the two as explained earlier – the sum of a set of sounds perceptu-
ally retains its parts as components. The definition of a product as the
common parts hold similar intuitive appeal. It is rather straightfor-
ward to demonstrate that the generalizations of Axioms 14-16 have
direct analogies in sound, although we will defer an exposition of
various examples to a more detailed publication. Specifically, we
favor the genuine variants which exclude corruptions of these defi-
nitions by a null entity.

Thus, we find that under a temporal definition of parthood, Gen-
eralized Extensional Mereology (GEM) applies to the characteriza-
tion of the relationships between sounds. For other definitions, we
must devise an alternate acoustical Mereology that explicitly avoids
Axiom 5.

4. SOME INITIAL CONCEPTS FOR AN ACOUSTICAL
MEREOLOGY

In the following text we propose a basic set of definitions to extend
general extensional Mereologies to acoustical domains. We note that
this is not intended solely to be an extension of GEM, which invokes
Axiom 5; however, it can extend GEM if the definition of parthood
invokes temporal order.

4.1. Extensions to sound and acoustics: Sound object and su-
perposition of sounds

In the Mereology of sound, a sound object is easy to define: it is a
part.
Def: Sound object : o – DapoPaq

Def 1 of proper parthood applies, and the following definitions
can be based on it:
Def: Background : bBa Ñ bSφy ^ bOa, where φy – p y “ aq.

The background b for a sound a is the object of which all objects
not equal to a are part, and which overlaps a.
Def: Foreground : aFb Ø bBa

Here a is the foreground for b if b is the background of a. Specif-
ically, combined with the definition for background, this also implies
that a cannot be a foreground to itself.
Def: Layer : La Ñ DxpxBa ^ DypaFyqq

a is a layer if there is another sound x for which a is background,
and another sound y for which a is foreground.
Extension A1: Partial Superposition: PSab Ñ DxpxPa ^ xPb ^
 x “ a^ x “ bq
Extension A2: Complete Superposition: CSab Ñ aPPb_ bPPa

Overlap and Underlap can now be defined in a variety of ways.
Below we define structural overlap, which has temporal and fre-
quency components.
Def: Overlap: aOb Ø Dxp xPa ^ xPbq

For spectro-temporal characterizations of overlap, overlap must
be sequentially tested in both domains. There must be an overlap in
time, and when this condition is tested true, there must be an overlap
in frequency. If t and f denote time and frequency respectively,
Def: Overlap in time: aOTb Ø DxDtpxtPat ^xt Pbtq
Def: Overlap in time-frequency: aOFb Ø DxDfpaOTb ^xf
Paf ^xf Pbf q

We recall that in all Mereologies, Overlap and Underlap are re-
flexive, symmetric, and intransitive. These properties must be main-
tained. When the entities on which a Mereology is developed violate
the basic axioms of classical Mereology (Axioms 1-3), paradoxes
can result. For example, the violation of the axiom of Transitivity
can lead to time-travel and other location paradoxes [16, 17].

Also note that in some cases a mere reinterpretation of exist-
ing Axioms can lead to useful insights for acoustics. For example,
an alternate expression of Axiom 4, that of Weak supplementation:
aPb Ñ Dxp xOa ^x Pbq, can easily describe sound events. If
sound a is a proper part of sound b, then a is not exactly b. This
means that there exists another sound c that is also part of b but is
not the same as a. In the example of rain, this c may be another
drop, or other sounds associated with rain. In the temporal domain,
this could be interpreted as a sound event in the conventional sense.
Note that in this case, what is clear is only that c exists. The nature
of c is not specified. Similarly, Axiom 5 of Strong supplementa-
tion:  bPa Ñ DxpxPb ^ xOaq, answers the question “what does
it mean for a sound b to not be part of another sound a”? As an
example, the sound of a birdcall which is not part of the sound of
a jackhammer. This axiom specifies that this can be accepted when
there is another sound x that is part of the birdcall, and no Overlap
is found between x and the sound of the jackhammer.

4.2. Evaluating definitions using categorical Mereological trees

Complex definitions can be formed and evaluated using Mereolog-
ical concepts. Let us take the example of concurrent sound events
and soundscapes. Plausible Mereological definitions for these could
be given as:
Def: Concurrent sound events: abSEx Ñ aUb^ppaPx^b Pxq^
paOTx ^b OTxqq

Two sound events a and b are concurrent and part of a sound-
scape x if a and b underlap, and overlap temporally with x. This
could in fact be evaluated using Mereological trees, using Mereo-
logical definitions and axioms as criteria. As an example, Fig. 1
evaluates for concurrent sound events within a soundscape. Note
that there can be multiple ways of evaluating for the strength and
weakness of the definitions above. Fig. 1 is only one possible way.

A Soundscape x containing a hierarchy of events a and b, where
a could itself be interpreted as a soundscape, can be defined as
Def: Soundscape: xSSab Ñ paPx ^b Paq ^ ppaOTx ^ aOFxq ^
pbOTa ^ bOFaqq

Fig. 2 evaluates the definition of soundscape given above.
Again, this is only one of the possible definitions of a specific kind
of soundscape.

Note that such decision trees can also aid the reverse process:
they can be very useful in visualizing and formulating a new Mereo-
logical extension. Given a collection of sound objects, if the goal of
the tree (which is usually to categorize the objects reasonably with
reference to human perception and decision on how they must be
grouped) is satisfied, and the chain of sequential decisions leads to
the correct outcome, the chain can be folded into the formalism as a
theorem or axiom.

5. GENERAL OBSERVATIONS FOR FURTHER WORK

Mereology was originally intended to be an alternative to set theory,
and different systems were worked out to different degrees. While
it was differentiated well from set theory [18], it did not replace set
theory as a grounding for all of mathematics, and is unlikely to do
so. Concepts of different types of numbers and number spaces are
difficult to pin down in the Mereological formalism . However, al-
gebras can be well defined with it. Rolf Eberle [19, 20] showed how
Mereology and Boolean algebra were related, for instance. The key
point to note is that when we have a very specific domain such as
a programming language or acoustics, the part-whole relations can
be usefully worked out and applied [21]. Extensions of Mereology



Fig. 1. Inferencing mechanism supporting the definitions of con-
current sound events and soundscape. This particular mechanism is
based on Parthood, Time-overlap and Underlap. Other such mecha-
nisms are possible for the same desired outcome.

Fig. 2. Inferencing mechanism based only on Parthood and Over-
lap. Some desired outcomes for the definitions above may not be
possible. This only weakly supports the definitions above.

need not be focussed on merely coming up with alternate descrip-
tions to rule out using concepts of sets. If the focus is to make the
descriptions and operations in the given domain simpler in terms of
parts and wholes, many appropriate and useful relations can be de-
vised. In devising these, we must take care that the basic axioms of
reflexivity, transitivity and antisymmetry are not violated.

5.1. Notations

In this paper, we have used the following standard notations: zpq for
(z such that); D (there exists at least one); @ (for all); (logical not);
_ (logical or);^ (logical and);Ñ (right implication);Ø (equivalent
to).
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