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Abstract—Regression-via-Classification (RvC) is the process of
converting a regression problem to a classification one. Current
approaches for RvC use ad-hoc discretization strategies and are
suboptimal. We propose a neural regression tree model for RvC.
In this model, we employ a joint optimization framework where
we learn optimal discretization thresholds while simultaneously
optimizing the features for each node in the tree. We empirically
show the validity of our model by testing it on two challenging
regression tasks where we establish the state of the art.

Index Terms—Regression-via-Classification, Regression Trees,
Discretization

I. INTRODUCTION

One of the most challenging problems in machine learning is
that of predicting a numeric attribute y of a datum from other
features z, a task commonly referred to as regressiodﬂ The
relationship between the features and the predicted variable
(which, for want of a better term, we will call a “response”) is
generally unknown and may not be deterministic. The general
approach to the problem is to assume a formula for the relation-
ship, and to estimate the details of the formula from training
data. Linear regression models assume a linear relationship
between the features and the response. Other models such as
neural networks assume a non-linear relationship. The problem
here is that the model parameters that are appropriate for
one regime of the data may not be appropriate for other
regimes. Statistical fits of the model to the data will minimize
a measure of the overall prediction error, but may not be truly
appropriate for any specific subset of the data. Non-parametric
regression models such as kernel regressions and regression
trees attempt to deal with this by partitioning the feature
space, and computing separate regressors within each partition.
For high-dimensional data, however, any computed partition
runs the risk of overfitting to the training data, necessitating
simplifying strategies such as axis-aligned partitions [1]], [2].

An alternative strategy, and one that is explored in this
paper, is to partition the space based on the response variable.
Formally, given a response variable y that takes values in
some range (Ymin, Ymax)» We find a set of threshold values
to,...,tn, and map the response variable into bins as y +—
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C,ift,_ 1 <y<t, forn=1,...,N. This process, which
effectively converts the continuous-valued response variable y
into a categorical one C, is often referred to as discretization.
The new response variable C' is, in fact, not merely categorical,
but ordinal, since its values can be strictly ordered. In order to
determine the value y for any x we must now find out which
bin C,, the feature = belongs to; once the appropriate bin
has been identified, the actual estimated y can be computed
in a variety of ways, e.g., the mean or median of the bin.
Consequently, the problem of regression is transformed into
one of classification. This process of converting a regression
problem to a classification problem is uncommonly known as
Regression-via-Classification (RvC) [3].

Naive implementation of RvC can, however, result in very
poor regression. Inappropriate choice of bin boundaries {¢;}
can result in bins that are too difficult to classify (since
classification accuracy actually depends on the distribution
of feature x within the bins). Alternatively, although permitting
near-perfect classification, the bins may be too wide, and
the corresponding “regression” may be meaningless. Ideally,
the RvC method must explicitly optimize the bin boundaries
for both classification accuracy and regression accuracy. In
addition, the actual classifier employed cannot be ignored; since
the decision boundaries are themselves variable, the classifier
and the boundaries must conform to one another.

We propose a hierarchical tree-structured model for RvC,
which addresses all of the problems mentioned above. Jointly
optimizing all the variables and classifiers involved against the
classification accuracy and regression accuracy is a combinato-
rially hard problem. Instead of solving this directly, inspired
by the original idea of regression trees [2], we follow a greedy
strategy of hierarchical binary partition of the response variable
y, where each split is locally optimized. This results in a tree-
structured RvC model with a classifier at each node. We employ
a simple margin-based linear classifier for each classification;
however, the features derived from the data may be optimized
for classification. Moreover, the structure of our model affords
us an additional optimization: instead of using a single generic
feature for classification, we can now optimize the features
extracted from the data individually for each classifier in the
tree. Since we employ a neural network to optimize the features



for classification, we refer to this framework as a Neural
Regression Tree (NRT).

To demonstrate the utility of the proposed approach we
conduct experiments on a pair of notoriously challenging
regression tasks: estimating the age and height of speakers from
their voice. We show that our model performs significantly
better than other regression models, including those that are
known to achieve the current state-of-the-art in these problems.

II. RELATED WORK

a) Regression Trees: Tree-structured models have been
around for a long time. Among them, the most closely related
are the regression trees. A regression tree is a regression
function in which the partition is performed on features
x instead of response variable y. The first regression tree
algorithm was presented by [4], where they propose a greedy
approach to fit a piece-wise constant function by recursively
splitting the data into two subsets based on partition on the
features x. The optimal split is a result of minimizing the
impurity which defines the homogeneity of the split. This
algorithm sets the basis for a whole line of research on
classification and regression trees. Improved algorithms include
CART [5]], ID3 [2], m5 [6], and C4.5 [7]. Recent work
combines the tree-structure and neural nets to gain the power of
both structure learning and representation learning. Such work
includes the convolutional decision trees [8]], neural decision
trees [9]], [10], adaptive neural trees [11]], deep neural decision
forests [[12f], and deep regression forests [[13]].

We emphasize that there is a fundamental difference be-
tween our approach and the traditional regression tree based
approaches: instead of making the split based on the feature
space, our splitting criteria is based on the response variables,
enabling the features to adapt to the partitions of response
variables.

b) Regression via Classification (RvC): The idea for RvC
was presented by [[14]. Their algorithm is based on k-means
clustering to categorize numerical variables. Other conventional
approaches [3]], [15] for discretization of continuous values are
based on equally probable (EP) or equal width (EW) intervals,
where EP creates a set of intervals with same number of
elements, while EW divides into intervals of same range. These
approaches are ad-hoc. Instead, we propose a discretization
strategy to learn the optimal thresholds by improving the neural
classifiers.

¢) Ordinal Regression: Because our model is essentially a
method to discretize continuous values into ordered partitions, it
can be somewhat compared to ordinal regression [|16]. Ordinal
regression is a class of regression analysis that operates on
data where the response variable is categorical but exhibits an
order relation. Naive approaches for ordinal regression often
simplify the problem by ignoring the ordering information

and treating the response variables as nominal categories.
A slightly sophisticated method [17] uses decomposition
of the response variable into several binary ones (such as
via binary ordered partitions) and estimating them using
multiple models. Another relevant class of approaches uses
the threshold models [[17]]. These approaches resemble our
approach in that they assume unobserved continuous response
variables underlying the ordinal responses, and use thresholds
to discretize them, where a variety of models (such as support
vector machines and perceptrons) are used to model the
underlying response variables.

Our proposed model shares many characteristics with these
approaches. However, one big difference is that in ordinal
regression, the partitions are predefined by the domain problem
and may not be optimized for statistical inference. Our
model, on the other hand, is based on a data-driven partition
strategy where partitions are optimized for more discriminative
representation of the data hierarchy and better performance at
the inference time.

III. NEURAL REGRESSION TREE

In this section, we formulate the neural regression tree model
for optimal discretization of the response variables in RvC,
and provide algorithms to optimize the model.

A. Partition

The key aspect of an RvC system is its method of partition
II. We define the partition IT on a set Y C R as

(YY) = {C},...,Cxn}

satisfying ngl C, =Y and C,;s are mutually disjoint. When
acting on a y € Y, II(y) := C,, subjected to y € C,.

B. Model Formulation

Formally, following the description of RvC in Section [} an
RvC framework consists of two main rules: a classification
rule and a regression rule. The classification rule classifies an

input z into disjoint bins, i.e., hy :  — {C1,--- ,Cn} with
parameter 6, where C,, = II(y) corresponds to t,,—1 <y < t,
forn =1,..., N. The regression rule r : (x,Cy,) — (tn—1, ts]

maps the combination of input « and class C,, onto the interval
(tn—1,ts]- Then, the combined RvC rule that predicts the value
of the response variable for an input x is

§(x) = r(z, ho(z)). (1)

Instead of making a hard assignment of bins, alternatively, the
classification rule hy may make a “soft” assignment by mapping
an input = onto the N-dimensional probability simplex, i.e.,
hg : x — Py where Py represents the set of N-dimensional
non-negative vectors whose entries sum to 1. The output of
this classification rule is, therefore, the vector of a posteriori
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Fig. 1: Illustration of neural regression tree. Each node is equipped with a neural classifier hy. The splitting threshold ¢ is

dependent on the response variable y and is locally optimized.

probabilities over the N classes, i.e., hfj () = P(C,, |x) where
hy (z) represents the n™ component of hg(z). Hence, the RvC
rule is given by

N
j(z) =EBe, [r(z,Cp)] = Y hg(@)ro, (), ()
n=1

where r¢, (1) = r(-,C,) fixes the second coordinate of r
at C,,. Defining an error £(y, §(z)) between the true y and
the estimated §(x), our objective is to learn the thresholds
{to,...,tn} and the parameters {0y, ...,0n} such that the
expected error is minimized

{00} < argtgninIEx [E(y, 4(x))] - 3)

Note that the number of thresholds (IV + 1) too is a variable
that may either be manually set or explicitly optimized. In
practice, instead of minimizing the expected error, we minimize
the empirical average error avg(E(y;, §(x;))) computed over
a training set.

However, joint optimization of {¢,} and {6,} is a hard
problem as it scales exponentially with n. To solve this problem
we adopt the idea of divide and conquer and recast the RvC
problem in terms of a binary classification tree, where each of
the nodes in the tree is greedily optimized. The structure of
the proposed binary tree is shown in Figure [T}

We now describe the tree-growing algorithm. For notational
convenience the nodes have been numbered such that for any
two nodes nq and nsg, if nq1 < ng, ny occurs either to the
left of ny or above it in the tree. Each node n in the tree
has an associated threshold ¢,, which is used to partition the

data into its two children n’ and n” (we will assume w.l.o.g.
that n” < n'). A datum (z,y) is assigned to the “left” child
n' if y < t,, and to the “right” child n” otherwise. The
actual partitions of the response variable are the leaves of
the tree. To partition the data, each node carries a classifier
hg, : x + {n/,n"}, which assigns any instance with features
2 to one of n’ or n”. In our instantiation of this model, the
classifier hg, is a neural classifier that not only classifies the
features but also adapts and refines the features to each node.

Given an entire tree along with all of its parameters and
an input x, we can compute the a posteriori probability of
the partitions (i.e. the leaves) as follows. For any leaf [, let
lo = --- — [, represent the chain of nodes from root [y
to the leaf itself I, = l. The a posteriori probability of the
leaf is given by P(l|z) = [[Y_, P(l, | l,—1, x), where each
P(l,|1l,—1,x) is given by the neural classifier on node /,_;.
Substitution into (2) yields the final regressed value of the
response variable

g(x) = Z Pl z)ri(x), 4)
I€leaves
where 7;(x) = r(z,1), in our setting, is simply the mean value
of the leaf bin. Other options include the center of gravity of
the leaf bin, using a specific regression function, etc.

C. Learning the Tree

We learn the tree in a greedy manner, optimizing each node
individually. The procedure to optimize an individual node
n is as follows. Let D, = {(x;,y;)} represent the set of
training instances arriving at node n. Let n’ and n” be the



children induced through threshold ¢,,. In principle, to locally
optimize n, we must minimize the average regression error
EMy;tn, 0,) = avg (E(y, Yn(z))) between the true response
values y and the estimated response 9, (z) computed using only
the subtree with its root at n. In practice, £(Dy,; ¢y, 6,,) is not
computable, since the subtree at n is as yet unknown. Instead,
we will approximate it through the classification accuracy of
the classifier at n, with safeguards to ensure that the resultant
classification is not trivial and permits useful regression.

Let y(t,) = sign(y — t,,) be a binary indicator function that
indicates if an instance (z,y) has to be assigned to child n’
or n”’. Let E(y(ty,), ho, (x)) be a qualifier of the classification
error (which can be binary cross entropy loss, hinge loss, etc.)
for any instance (x,y). We define the classification loss at
node n as

1
vt = D,

Eg Z 5(y(tn),h9n (:L‘)), )]

(z,y) €Dy,

where |D,,| is the size of D,. The classification loss
cannot be directly minimized w.r.t t,, since this can lead
to trivial solutions, e.g., setting ¢,, to an extreme value such
that all data are assigned to a single class. While such a
setting would result in perfect classification, it would contribute
little to the regression. To prevent such solutions, we include
a triviality penalty 7 that attempts to ensure that the tree
remains balanced in terms of the number of instances at each
node. For our purpose, we define the triviality penalty at any
node as the entropy of the distribution of instances over the
partition induced by t,, (other triviality penalties such as the
Gini index [5]] may also apply though)

T (tn) = —p(tn)logp(tn) — (1 — p(tn))log(l — p(tn)), (6)
Z(r,y)E]D)n (1 + y(tn))

2|y |

The overall optimization of node n is performed as

p(tn) =

0r .ty =argmin AEyg_ ¢ + (1 —N)T (tn), 7
O st
where A € (0, 1) is used to assign the relative importance of
the two components of the loss, and is a hyper-parameter to
be tuned.

In the optimization of (7)), the loss function depends on ¢,
through y(t,,), which is a discontinuous function of ¢,,. To get
around this difficulty of optimizing (7), we have two possible
ways: the scan method and the gradient method. In the first,
we can scan through all possible values of ¢, to select the
one that results in the minimal loss. Alternatively, a faster
gradient-descent approach is obtained by making the objective
differentiable w.r.t. ¢,,. Here the discontinuous function sign(y—
t,) is approximated by a differentiable relaxation: y(t,) =
0.5(tanh(B(y — t,,)) + 1), where 3 controls the steepness of

Input: D
Parameter: {¢,, }, {6, }
Output: {¢:}, {0}
Function BuildTree (D,)
Initialize ¢,,, 0,
tr,0; < NeuralClassifier (Dy,t,,0,)
Dy, Dy < Partition (]D)n,t;:)
for Dn in {D,L/,Dn//} do
if D,, is pure then
| continue

else
| BuildTree (DD,)

end

end
BuildTree (D)
Algorithm 1: Learning neural regression tree. The tree

is built recursively. For each node n, it adapts and classifies
the features, and partitions the data based on the locally
optimal classification threshold.

the function and must typically be set to a large value (8 = 10
in our settings) for close approximation. The triviality penalty
is also redefined (to be differentiable w.r.t. £,,) as the proximity
to the median 7 (¢,) = ||t, —median(y | (x,y) € D,)||2, since
the median is the minimizer of (6). We use coordinate descent
to optimize the resultant loss.

Once optimized, the data ID,, at n are partitioned into n’
and n” according to the threshold ¢, and the process proceeds
recursively down the tree. The growth of the tree may be
continued until the regression performance on a held-out set
saturates. Algorithm [I] describes the entire training algorithm.

IV. EXPERIMENTS

We consider two regression tasks in the domain of speaker
profiling—age estimation and height estimation from voice.
The two tasks are generally considered two of the challenging
tasks in the speech literature [/18[]-[26].

We compare our model with 1) a regression baseline using
the support vector regression (SVR) [27], 2) a regression tree
baseline using classification and regression tree (CART) [3],
and 3) a neural net baseline with multilayer perceptron (MLP)
structure. Furthermore, in order to show the effectiveness of
the “neural part” of our NRT model, we further compare our
neural regression tree with a third baseline 4) regression tree
with the support vector machine (SVM-RT).

A. Data

To promote a fair comparison, we select two well-established
public datasets in the speech community. For age estimation,



TABLE I: Fisher Dataset Partitions

# of Speakers / Utterances

Male Female
Train 3,100 / 28,178 4,813 / 45,041
Dev 1,000 / 9,860 1,000 / 9,587
Test 1,000 / 9,813 1,000 / 9,799
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Fig. 2: Age distribution (in percentages) for male (7op) and
female (Bottom) speakers for the Fisher database for train (Left),
development (Center) and test (Right) sets. The horizontal axis
is age.

TABLE II: NIST-SRES8 Dataset Stats

# of Speakers / Utterances
Male Female

384 /33,493

651 /59,530

130 140 150 160 170 180 190 200

Fig. 3: Height distribution (in percentages) for male (Left) and
female (Right) speakers for the NIST-SRES database. The
horizontal axis is height.

we use the Fisher English corpus [28]. It consists of a 2-
channel conversational telephone speech for 11,971 speakers,
comprising of a total of 23,283 recordings. After removing
58 speakers with no age specified, we are left with 11,913
speakers with 5,100 male and 4, 813 female speakers. To the
best of our knowledge, the Fisher corpus is the largest English
language database that includes the speaker age information
to be used for the age estimation task. The division of the
data for the age estimation task is shown in Table [ The
division is made through stratified sampling such that there is
no overlap of speakers and all age groups are represented across

TABLE III: Model Specifications

Model Specification
Age Height
Linear: (400, 1000)
Linear: (1000, 1000) .
NRT Linear: (1000, 1) i(:a:t‘ed?;igfe 6‘8’6‘;‘
Nonlin.: ReLU P ’
Optim.: Adam (Ir 0.001)
Kernel: RBF .
SVM-RT  Regul.: £, l(ls;laer;‘fk"‘; n/z‘lg)e with
Optim.: Scan (Sec. |[II-C)
Kernel: RBF Kernel: Linear
SVR Regul.: ¢1 Regul.: ¢1
CART Criteri.: MSE Criteri.: MSE
Linear: (400, 512) Linear: (600, 2048)
MLP Linear: (512, 1) Linear: (2048, 1)

Nonlin.: ReLU
Optim.: Adam (Ir 0.005)

Nonlin.: ReLU
Optim.: Adam (Ir 0.01)

the splits. Furthermore, Figure [2] shows the age distribution of
the database for the three splits (train, development, test) in
relation to the Table [

For height estimation, we use the NIST speaker recognition
evaluation (SRE) 2008 corpus [29]. We only obtain heights for
384 male speakers and 651 female speakers from it. Because
of such data scarcity issues, we evaluate this task using cross-
validation. Table [l and Figure [3] show the statistics for the
NIST-SRES database.

Since the recordings for both datasets have plenty of silences
and the silences do not contribute to the information gain,
Gaussian based voice activity detection (VAD) is performed on
the recordings. Then, the resulting recordings are segmented
to one-minute segments.

To properly represent the speech signals, we adopt one
of the most effective and well-studied representations, the
i-vectors [30]. I-vectors are statistical low-dimensional rep-
resentations over the distributions of spectral features, and
are commonly used in state-of-the-art speaker recognition sys-
tems [[31] and age estimation systems [32], [33[]. Respectively,
400-dimensional and 600-dimensional i-vectors are extracted
for Fisher and SRE datasets using the state-of-the-art speaker
identification system [34]].

B. Model

The specifications for our model and the baseline models
are shown in Table [ITl] The proposed NRT is a binary tree
with neural classification models as explained in Section [[1I-B}
where the neural classifiers are 3-layer ReLU neural networks.
Each model is associated with a set of hyper-parameters
(e.g., the X in , the number of neurons and layers for the
neural nets, the margin penalty and kernel bandwidth for SVM
and SVR, the depth for CART, etc.) that have to be tuned



TABLE IV: Performance evaluation of neural regression tree and baselines.

Task Dataset Methods Male Female
MAE RMSE MAE RMSE
SVR 9.22 12.03 8.75 11.35
A Fish CART 11.73 15.22 10.75 13.97
£e 1sher MLP 9.06 11.91 8.21 1075
SVM-RT 8.83 11.47 8.61 11.17
NRT 7.20 9.02 6.81 8.53
SVR 6.27 6.98 5.24 577
. CART 8.01 9.34 7.08 8.46
Height SRE MLP 8.17 10.92 7.46 9.47
SVM-RT 570 7.07 485 6.22
NRT 543 6.40 4.27 6.07

on the development set. These hyper-parameters control the
complexity and generalization ability of the corresponding
models. We tune them based on the bias-variance trade-off until
the best performance on development set has been achieved.

C. Results

To measure the performance of our models on the age and
height estimation tasks, we use the mean absolute error (MAE)
and the root mean squared error (RMSE) as evaluation metrics.
The results are summarized in Table [Vl To reduce the effect of
weights initialization on the performance of models consisting
neural nets, we run those models multiple (10) times with
different initialization, and report the average performance
error.

For both age and height estimation, we observe that the
proposed neural regression tree model generally outperforms
other baselines in both MAE and RMSE, except that for height
task, the neural regression tree has slightly higher RMSE than
SVR, indicating higher variance. This is reasonable as our NRT
does not directly optimize on the mean squared error. Bagging
or forest mechanisms may be used to reduce the variance.
Furthermore, with the neural classifier in NRT being replaced
by an SVM classifier (SVM-RT), we obtain higher errors than
NRT, demonstrating the effectiveness of the neural part of the
NRT as it enables the features to refine with each partition and
adapt to each node. Nevertheless, SVM-RT still yields smaller
MAE and RMSE values than SVR and CART, and is on par
with the MLP on the age task; on the height task, SVM-RT
outperforms SVR, CART and MLP in terms of MAE values
while also showing relatively small variances. This consolidates
our claim that even without the use of a neural network, our
model can find optimal thresholds for the discretization of
response variables. On the other hand, this also confirms that
using neural nets without the tree adaptation only contributes
to a small portion of the performance gain provided that the
neural nets generalize well. Additionally, we observe that a
simple-structured MLP, as compared to the MLP component

in NRT, is required to obtain reasonable performance—a more
complex-structured MLP would not generalize well to the test
set and yield high estimation bias. This, in turn, implies that our
NRT model can employ high-complexity neural nets to adapt
the features to be more discriminative as the discretization
refines, while at the same time maintain the generalization
ability of the model.

To test the significance of the results, we further conduct
pairwise statistical significance tests. We hypothesize that
the errors achieved from our NRT method are significantly
smaller than the closest competitor SVR. Paired t-test for
SVR v.s. SVM-RT and SVM-RT v.s. NRT yield p-values less
than 2.2 x 10716, indicating significant improvement. Similar
results are obtained for height experiments as well. Hence,
we validate the significance of the performance improvement
of our NRT method on estimating ages and heights over the
baseline methods.

D. Node-based Error Analysis

The hierarchical nature of our formulation allows us to
analyze our model on every level and every node of the tree in
terms of its classification and regression error. Figure ] shows
the per-level regression errors in terms of MAE for female and
male speakers, where the nodes represent the age thresholds
used as splitting criteria at each level, and the edges represent
the regression errors. We notice that regression error increases
from left to right for both female and male speakers (except the
leftmost nodes where the behavior does not follow possibly due
to data scarcity issues), meaning the regression error for the
younger speakers is lower than the error for older speakers. In
other words, our model is able to discriminate better between
younger speakers. This is in agreement with the fact that the
vocal characteristics of humans undergo noticeable changes
during earlier ages, and then relatively stabilize for a certain age
interval [35]]. Hence, the inherent structural properties of our
model not only improve the overall regression performance as
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Fig. 4: Regression errors for different age groups for fe-
male (Left) and male (Right) for the task of speaker age
estimation. Each node represents the age threshold used as
splitting criterion, and each edge represents the regression error
in terms of MAE.

we see in the previous section, but in the case of age estimation,
also model the real world phenomenon.

E. Limitations

We acknowledge that our model might not be ubiquitous
in its utility across all regression tasks. Our hypothesis is
that it works well with tasks that can benefit from a partition
based formulation. We empirically show that to be true for
two such tasks above. However, in future we would like to test
our model for other standard regression tasks. Furthermore,
because our model formulation inherits its properties from the
regression-via-classification (RvC) framework, the objective
function is optimized to reduce the classification error rather
than the regression error. This limits us in our ability to directly
compare our model to other regression methods. In future, we
intend to explore ways to directly minimize the regression error
while employing the RvC framework.

V. CONCLUSIONS

In this paper, we proposed Neural Regression Trees (NRT)
for optimal discretization of response variables in regression-
via-classification (RvC) tasks. It targeted the two challenges
in traditional RvC approaches: finding optimal discretization

thresholds, and selecting optimal set of features. We developed
a discretization strategy by recursive binary partition based
on the optimality of neural classifiers. Furthermore, for each
partition node on the tree, it was able to locally optimize
features to be more discriminative. We proposed a scan method
and a gradient method to optimize the tree. The proposed NRT
model outperformed baselines in age and height estimation
experiments, and demonstrated significant improvements.
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