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Abstract. Automatic speech recognition has generally been treated as
a problem of Bayesian classification. This is suboptimal when the distri-
butions of the training data do not match those of the test data to be
recognized. In this paper we propose an alternate analogous classifica-
tion paradigm, in which classes are modeled by thermodynamic systems,
and classification is performed through a minimum energy rule. Bayesian
classification is shown to be a specific instance of this paradigm when
the temperature of the systems is unity. Classification at elevated tem-
peratures naturally provides a mechanism for dealing with statistical
variations between test and training data.
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1 Introduction

In the usual rule for Bayesian classification any data X is assigned to the class
that is most likely to have generated it. Formally, if we represent the class as-
signment of X as ¢(X), the classification rule is given by

o(X) = argmgxP(C)P(X|C’) (1)

where C represents any class, P(C) is the a priori probability of C, and P(X|C)
is the probability distribution of data from class C. In the context of automatic
speech recognition, the classes are actually word sequences [1]. The Bayes clas-
sification rule attempts to identify the a posteriori most likely word sequence,
given (features derived from) a recording X.

The Bayes classification rule is optimal when P(X|C) is the true class-
conditional probability distribution of data for C'. In practical scenarios, however,
the true distribution P(X|C) is not known and must be approximated by a model
P(X ; A¢), the parameters A¢ of which must be learned from training data. The
model P(X; A¢) is generally learned to be close (in the sense of KL divergence)
to the distribution of the training data, and often does not adequately model
the test data. As as result, the classification rule of (1) is suboptimal and can
result in significantly degraded performance when used in a speech recognizer.



In [2, 3] we have proposed an alternative formalism for classification in such
scenarios. Instead of assuming that P(X ; Ac) represents a class-specific proba-
bility distribution, we interpret it as a thermodynamic system, which has resulted
in an observation X. Subsequently, we replace the “maximum probability” cri-
terion deriving from the stochastic-process interpretation which leads to Bayes
classification rule, with a “minimum energy” criterion: the observation X is now
assigned to the class C' whose system must expend the least energy to generate
it. Designating the energy as Fo(X), the modified classification rule is

c(X) = arg mcln Fo(X) (2)

The distinction between the probability-based rule of (1), and (2) can be
resolved by defining Fo(X) = —log P(C, X; A¢). Indeed, such an equivalence
is commonly ascribed, and has been drawn upon in the definition of stochastic
models such as the Gibbs distribution [4], or even the normal distribution, where
the log probability is analogous to common definitions of energy in a data or
vector [5].

Thermodynamic systems, however, also include a temperature parameter. In
the physical world the temperature of the system characterizes the fluctuation of
state of the system, effectively characterizing the variation in any measurements
of it — the greater the temperature the greater the variation will be. In our clas-
sification framework, the temperature parameter may be analogously considered
as characterizing the increased variation in observations. At the specific setting
of T = 1, the probabilistic and energy classification rules become identical; at
higher values however, the energy-based mechanism naturally allows for greater
variation in the data, such as the differences between training and test data.

In the subsequent sections we will first describe the general Themodynamic
principle of free energy (Sect. 2), followed by a brief outline of minimum-free
energy classification (Sect. 3) and how it applies to automatic speech recogni-
tion (Sect. 4). We then present experimental evidence of the effectiveness of the
formulation (Sect. 5) and discussion (Sect. 6).

2 Free Energy of a Stochastic System

A thermodynamic system at temperature 7' can exist in one of a large (poten-
tially infinite) number of states [6]. At each state s the system has an energy F.
If the probability of state s is given by Pr(s), the internal energy of the system,
representing the capacity of the system to do work, is given by the average:
Ur =), Pr(s)Es. This capacity is counteracted by its internal disorder, which
is factored into its entropy Hr = — > Pr(s)log Pr(s) and the temperature 7'
of the system. The Helmholtz free energy of the system, measuring the useful
work obtainable from the system when it is closed, is thus defined by

Fr=Ur—THr =Y _ Pr(s)E;+ T _ Pr(s)log Pr(s) (3)



At constant temperature, systems will drift towards the lowest free-energy states
[6], adjusting probabilities Pr(s) until Fr is minimized. The distribution Pr(s)
at thermal equilibrium, obtained by minimizing Frp, is the Gibbs distribution

Pr(s) = %exp (‘f) (4)

where Z is a normalizing term. The corresponding equilibrium free energy is

Fr= leog;exp (‘f) (5)

3 Classification with Free Energy

Consider a class with a stochastic generative latent-variable model that assigns
a probability P(X|C) = ) . P(s|C)P(X|C,s) to any observation. To generate
any observation, the generative process must be in any latent state s and draw
an observation from the state-conditioned distribution P(X|C, s).

For energy-based classification we model every class C instead by a thermo-
dynamic system that can exist in one of a set S¢ of states. Within any state
s the system must have an energy ES(X) to result in the observation X. The
equilibrium free energy of this system, when it is at temperature 7T, is hence
given by

FE(X) = —TlogZexp <_ES;(X)> (6)

The “energy” of each state is equated to negative log-likelihood of the combi-
nation of the state and the observation, E¢(X) = —log P(X, s, C) — intuitively,
the greater the energy needed to exhibit X, the less likely the system is to visit
the corresponding state. Using these values, the free energy of the system for
any class comes out as

log P(X,S|C>> )

Ff(X)=—log P(C) - T1

T (X) = —log P(C) Oggew( i
We specify the minimum-energy classification rule as follows: the observation

X is assigned to the class that has the lowest free energy for X.

e(X) = argmcinFTC(X) = argngn <— log P(C) — TlogZP(X,sC’ﬁ) (8)

This is a natural extension of the principle that thermodynamic systems evolve
towards minimum-energy configurations. Note that the objective in (8) remains
a function of the temperature parameter T. As T increases and the internal
disorder in the systems increases, the systems for the various classes will more
frequently visit low-energy states associated with X; in the limit 7" dominates



and all classes are equally capable of generating observation X. From a classifica-
tion perspective, T' characterizes external influences such as noise or other factors
that increase the entropy of the systems. Note that at 7' = 1 (the “quiescent”
condition) (8) reduces to a conventional Bayesian classifier of (1).

4 Minimum Free Energy Decoding with Hidden Markov
Models

A particularly interesting family of stochastic models that can be cast into the
free-energy framework are stochastic functions of Markov chains, also known as
Hidden Markov Models (HMMs) [7]. HMMs are frequently employed in auto-
matic speech recognition systems [1]. HMM-based speech recognition systems
formulate the Bayes classification paradigm as identifying the word sequence
with the a posteriori most likely state sequence for any speech recording X [8].

W = argmV[a}xmgXP(W)P(S|W)P(X|S, W) 9)

where W represents any word sequence, P(W) is the a priori probability of
W, S is a state sequence through the HMM for W, and P(S|W) represents
its probability. The state output distributions of the HMM are often modeled
by mixture distributions, typically Gaussian mixtures. Thus the classification
equation can be re-written as

W = argm‘/‘e/u(mSaXP(VV7 S) || P(X¢lst)

=
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Here X; is the t'" vector in X and s; is the ' state in S. N() represents a
Gaussian distribution, P(k|s;) represents the mixture weight of the k*® Gaussian
in the Gaussian mixture distribution for state s;, and ps, , and X, j represent
the mean and covariance of the k" Gaussian in s;.

We can define K = kq, ko, ..., kr, representing a sequence of Gaussians, one
each from states si-sp. If each state is represented by a mixture of M Gaussians,
there are MT such sequences. Combining W and S into a single variable W, (10)
can be rewritten as:

W = argn%/%xlogP(W) +10g;P(X,K\W) (11)

where

=

P(X, KW) = | | P(kels) N (Xt sy b X, k) (12)

t=1

The above is now easily recast into minimum-energy classification. Each class W
is represented by a thermodynamic system, which can be in one of a M7 states,



where each state is a Gaussian sequence K. The energy of any state is given by
EY = —log P(X, K,W). Consequently, the minimum free-energy classification
rule of (7) becomes, with minimal manipulation,

W = argmin —log P(W) — T log Y Plhkls)™ N (X pr, by Do, )T (13)
t k

This modified classification rule requires only minimal changes to the conven-
tional Viterbi decoder. The computation of state output distribution values as

>k P(ke|se) N (X ps, b, Xs, ) is replaced by (Zk P(ke|se)T N (Xt prsg b Zoo ) T
The rest of the decoder remains unchanged. We refer to this modified decoding
strategy as “minimum-energy decoding”.

5 Experiments

We expect the benefits of minimum-energy recognition to be exhibited primarily
when there is mismatch between the distributions employed by the recognizer
and the test data. Our experiments were therefore aimed at evaluating the effect
of minimum-energy decoding under conditions of mismatch. One of the most
common reasons for mismatch in speech recognition systems is noise: test data
to be recognized will frequently be corrupted by various types of noise not seen
in the training data. Note that noise robustness is not the focus of this paper;
rather it is the mismatch between the acoustic models and the test data.

Table 1. Performance of minimum-energy speech recognition in terms of word er-
ror rate (%). The T=1.0 column corresponds to conventional decoding, representing
Bayesian classification. The bold numbers are the best results obtained in each row.

Temp 1.0 1.1 1.2 13 14 15 16 1.7 1.8 1.9 2.0

0dB 92.790.8 87.4 85.4 79.9 79.3 78.2 77.9 75.8 77.8 82.3
5dB  65.362.4 57.4 55.8 53.4 51.4 50.5 49.2 48.3 51.3 57.7
10dB 47.6 46.9 45.1 44.8 42.8 38.2 37.4 36.6 37.8 41.2 47.2
15dB 36.236.1 35.1 33.5 31.9 30.2 30.8 31.8 34.2 37.2 40.1
20dB 27.226.8 25.1 24.2 24.6 25.4 27.2 29.4 32.4 35.2 38.1

We conducted experiments on the Fisher database [9] digitally corrupted by
noise to introduce mismatch. The training data comprised the Fisher Phase 1
corpus (LDC catalog No. LDC2004S13), including 5,850 two-channel audio files,
each containing a full conversation of up to 10 minutes. 111157 speech segments
from the corpus, representing nearly the entire data, minus our held out test set,
were used to train the models. A set of 10,000 segments from the same data were
used as our held-out designated test set. The test set were corrupted to various
signal-to-noise ratios (SNR) by babble noise to introduce mismatch with respect
to the the training set.



We used the Carnegie Mellon University’s Sphinx-3 triphone-based automatic
speech recognition system [10] to perform all our experiments. All models were
3-state left-to-right Bakis topology HMMSs. A total of 5000 tied states, each
modeled by a mixture of 16 Gaussians, were employed. The language model
was trained from the Fisher training corpus and the Switchboard corpus. The
baseline recognition word error rate on the uncorrupted test set was 14.3%.

The test data were recognized at several temperatures. Table 1 shows the
word error rates obtained at each SNR, against the temperature at which the
data were decoded. The column in the table corresponding to 7' = 1.0 is identical
to the standard Bayesian decoding, as explained earlier.

We note from the results that the optimal recognition performance is not
obtained at T = 1. The best result in all cases occurs at an elevated tempera-
ture. Moreover, as the SNR decreases and, consequently, the degree of mismatch
between the training and test data increases, the optimal temperature increases.
Thus, while the optimal temperature at 0dB is close to 2.0, at 20dB the optimal
temperature is 1.3. At greater mismatch, e.g. at 0dB, the improvement from
increased temperature is quite dramatic, amounting to about 17% absolute.

6 Conclusions

Elevation of temperature is observed to result in significantly improved recogni-
tion under conditions of mismatch. Considering that just a simple adjustment
has been made to the manner in which state-output probabilities are computed
during decoding in order to achieve this, the improved classification scheme is
promising for use in speech recognizers. It must be noted that although these
improvements are not as large as that improved with sophisticated noise com-
pensation algorithms, that is not the objective of our solution. The proposed
algorithm makes no assumptions about the reason for the mismatch; the only
assumption is that while the systematic differences between classes persist in
the test data, the actual distribution may be shifted with respect to the training
data. Our purpose is to demonstrate that the proposed approach, which is a
natural extension of conventional Bayesian classification, could be used to good
effect under such conditions.

A key question that remains to be answered is that of selecting the optimal
temperature in an unsupervised manner. We continue to explore this problem.

More generally, the notions of “temperature” and “free energy” have often
been invoked in the context of annealing for optimization of objective functions
defined over a continuous support [11]. Classification, on the other hand, is typi-
cally a search over a discrete support, and not usually viewed as an optimization
problem. This is generally considered to be distinct from the situations where
notions of free energy and temperature may be invoked. The novelty of our ap-
proach is to view the latter as a special case of optimization, where the task is to
find the optimal value over a discrete support. In this context, automatic speech
recognition systems present an interesting case — although the support remains
discrete, it is inifinite, representing all possible sentences that may be spoken,



suggesting that the concept of annealing may be drawn upon if the search space
could somehow be ordered and represented over a continuum. However, how this
may be done is unclear, and this remains a topic for future research.
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