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ABSTRACT

Traditionally, the use of untranscribed speech has been restricted to
the unsupervised or semisupervised training of acoustic models. On
the other hand, comparison of recognizers has required labeled data.
In this paper we show how a recognizers (and classifiers in general)
may be rank-ordered in terms of their performance using only a large
quantity of untranscribed (unlabeled) data, given a third “reference”
recognizer (or classifier). We develop statistical tests for the compar-
ison of recognizers in this scenario. Interestingly, the actual recog-
nition accuracy of the reference recognizer is immaterial to the test,
provided it is better than random. We also show, through detailed
experiments, that the predictions based on untranscribed data are in-
deed valid and correct.

Index Terms— Hypothesis testing, Untranscribed data, Unsu-
pervised learning, Speech recognition.

1. INTRODUCTION

1.1. The case for untranscribed data

Speech recognition systems have traditionally been trained with
transcribed data. Much of the cost of training a system properly
is the cost of acquiring this data — collecting appropriate data and
having them transcribed correctly is expensive. This has often been
an impediment to the training of systems for new languages and
domains.

Untranscribed data, however, are relatively cheap, and have in
fact become readily available. Recent improvements in communi-
cation, recording, HCI and storage technologies, have resulted in an
explosive growth in the amount of recorded and stored speech data.
This provides a rich new source of data to train speech recognition
systems. Much of this data is untranscribed, however.

This has led to explorations into techniques that can train speech
recognition systems from large amounts of untranscribed data, such
as unsupervised or semi-supervised training techniques e.g. [1, 2]
and data selection methods for untranscribed training data [3].

1.2. Comparing recognition systems

However, comparison of trained systems still requires transcribed
data. In other words, if were given a pair of systems and had to de-
termine which of these may be expected to recognize speech better,
we still require transcribed data to make this evaluation.

Typically, to compare two recognizers, their recognition per-
formance on an evaluation set of transcribed speech recordings is
compared. To complete the comparison however, statistical signifi-
cance tests must be performed. The null hypothesis that the recogni-
tion accuracy of both systems is actually identical is evaluated using
one of several possible methods. If we assume that the number of
words hypothesized by the two systems is identical to, and has one
to one correspondence with, the words in the actual transcription for

the data, the Wilcoxon test [4] or McNemar’s test [5] may be used.
These tests evaluate the probability of the observed correspondences
in the errors made by the two systems. In speech recognition sys-
tems, where the recognizer may also insert or delete words, a more
appropriate test is the “Matched Pairs Sentence-Segment Word Error
(MAPSSWE) Test” [6] which compares the recognition errors made
by the two systems over entire segments of audio.

In either case, the test evaluates the hypothesis that the two
recognition outputs are separate draws from the same random pro-
cess. If this hypothesis can be rejected with sufficiently high prob-
ability, then it is assumed that the system that produced the better
accuracy of the two is indeed better.

1.3. Comparison with untranscribed data

However, as mentioned earlier, these tests require transcribed data
which is expensive to obtain. Untranscribed data are easier and
cheaper to get. Would it then be possible to use untranscribed data to
determine which of two recognizers performs better. That is, given a
pair of recognizers and a corpus of untranscribed data, can we decide
which of the two is better?

More generally, given two classifiers of unknown provenance,
can we decide which of them is better, given only a collection of
unlabeled data instances to evaluate them on?

The somewhat surprising answer is “yes”, provided we have ac-
cess to a third classifier! The only constraint on the third classifier is
that it must perform better than random. It can even be less accurate
than both classifiers being compared. By comparing the output of
the classifiers being evaluated to that of the third classifier, it is pos-
sible to compute a probability for the truth of the null hypothesis that
states the two classifiers are identical in performance. More gener-
ally, it is possible to determine which of two recognizers is likely to
perform better on a given test data, given only their output, and that
of a third recognizer, on a common set of untranscribed test data.

1.4. Contributions of this paper

In this paper we describe statistical tests that can be performed to
compare two recognizers, given only unlabeled data and a third “ref-
erence’” recognizer (or, more generally, a reference classifier).

We begin by showing analytically, for simple binary classifiers,
how the comparison of their output to that of the reference classifier
relates to the true underlying relation between the classifiers. We de-
scribe a simple statistical test to compare the classifiers when the true
labels of the test data are not known, but are obtained from the ref-
erence classifier. We continue to show how McNemar’s test can be
generalized to the problem of statistical comparison from unlabeled
data. Interestingly, the tests do not depend upon the actual accuracy
of the reference classifier employed to obtain labels, provided it is
better than random. Finally we also show how the tests generalize to
multi-class classifiers.



To conclude, we show through a detailed set of experiments that
the predictions made by the tests are indeed validated by perfor-
mance observed on other test data.

2. COMPARING TWO CLASSIFIERS WITH A
REFERENCE CLASSIFIER

2.1. Agreement between two binary classifiers

Consider two binary classifiers P and a reference classifier R. Let p
be the probability of correct classification for P and r the probability
of correct classification for R. Let Apg represent the event that P
and R agree on any classification. The probability ¢, of Apg is
given by ¢, = pr + (1 — p)(1 — r). Note that da,,/Op = 2r — 1,
i.e. forr > 0.5, ap, increases linearly with p.

2.2. A simple unpaired test for binary classifiers

Now consider any instance that has been classified by binary clas-
sifiers P, () and R, with probability of success p, ¢ and 7 respec-
tively. The probability that P and R will agree is given by ¢, =
pr+(1—p)(1—r). The probability that Q and R will agree is given
by tgr = qr+ (1 —¢q)(1 —r). Since rx + (1 —r)(1 — ) is a mono-
tonically increasing function of z forr > 0.5, p > q < tpr > tgr.

We can now follow the conventional formalism for proving sta-
tistical significance [5]. Let Npg represent the number of instances
on which P and R agree, and Ng r the number of instances on which
Q@ and R agree. Let N represent the total number of evaluation in-
stances. Assuming all test instances to be independently classified,
the maximum likelihood estimates of ¢,,- and ¢4, are given by Equa-
tion 1.
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Let Npr > Ngr. The null hypothesis that must be rejected
in order to accept that ¢, > tg., and therefore that p > ¢ is that
tpr = tqr, or equivalently that dp,q = ¢, — tgr = 0. The maximum
likelihood estimate of d,q is Jpq = fpr — tqr. The variance of this
estimate is given by varczpq = varty, + varty.. The mean of
the distribution of a maximum likelihood estimate of the probability
parameter x of a Bernoulli distribution is . The variance of the
estimator is z(1 — x) /N. Thus, under the null hypothesis, the mean
and variance of the estimator for d,4 is 0 and a good estimate for its
variance is given by

ey
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where tp; = 0.5(fp + tqr). Thus, for large N, under the null
hypothesis d = cipq /0 pq (Which can now be computed entirely from
Npr, Nor and N) is a random variable drawn from A (z;0, 1),
a normal distribution with 0 mean and unit variance. In order
to reject the hypothesis, we compute the two sided probability

Prest = 2 f&ol N (z;0,1)dx that the absolute value of a randomly

drawn value can be equal to or greater than d. If Piest 1s smaller
than a rejection threshold (typically 0.05, or 0.01), then the null
hypothesis is rejected and it is assumed that p > ¢, i.e. that Pis a
more accurate classifier than Q).

Note that the above procedure does not require knowledge of the
accuracy r of the reference classifier. In fact,  can be lesser than p
or g. All that is required is knowledge of the number of instances
where P and (Q agreed with R respectively.

PQ
TT TF FT FF
r LL| par p(l-q)r (1-p)gr (I-p)(1-g)r
F | pg(1-r) | p(-@)(1-r) | (1-p)g(1-r) | (1-p)(1-q)(1-r)

Table 1. Possible outcomes and their probabilities. “T” represents
correct classification; “F” represents misclassification. The columns
represent outcomes of P and ). e.g. the column “TT” represents
events in which both P and @ classify an instance correctly. Rows
represent outcomes of R. The table entries represent probabilities,
e.g. the probability that P, @ and R will all classify correctly is pgr.

2.3. A Generalized McNemar’s Test

As in the case of evaluation on labeled data, the test of Section 2.2
can be modified to account for the fact that both P and () are classi-
fying the same data set.

Let Npqr represent the number of instances on which the the
classification outcomes are P — p, Q@ — qgand R — r. E.g
Nrpr is the number of events that P and R classified correctly, but
() misclassified.

Since our data are not labeled, we are only able to observe agree-
ments between the classifiers, but we cannot determine the correct-
ness of the output of any classifier. Thus we only observe the fol-
lowing counts:

Npor = Nrrr+ Nrrr
Npor = Nrrr+ Nrrr
Npgr = Nrrr+ NrFr
Npor Nrrr 4+ Nrrr

where Npgp is the number of times P and R agree, but () does not
agree with them, Ny is the number of times ) and R agree with
one another, but not P, Np, ; is the number of times P and () agree
with one another, but not R and Npgr is the number of times all of
them agree.

Let Tpo g be the probability that P and R agree, but not @,
and Tpqop the probability that @) and R agree, but not P. Un-
der the null hypothesis, Tpor = Tpgr, or equivalently, Tpq =
Tpor/(Trar = Tegr) = 0.5. In other words, according to the
null hypothesis, the conditional probability of P agreeing with R,
given that only one of P or () agree with R is 0.5.

The standard derivation of McNemar’s test now follows. The
conditional probability distribution of Np¢ g is a binomial distribu-
tion B(Npq,0.5), where Npq = Npsr = Npggr. The probabil-
ity of getting at least Npg g out of Npq agreements under the null
hypothesis is given by

2P(Npor <n < Npq) if Npgr > 0.5Npg
2P(0 <n < Npgr) if Npgr < 0.5Npq 3)
1.0 if Npgr = 0.5Npq

Ptest -

where

N N

n
n=N1

If Pies: is smaller than a chosen significance threshold (e.g. 0.05 or
0.01) the null hypothesis is rejected. If so, then the sign of p — ¢q is
assumed to be the same as the sign of Npgr — Npgp-

Note once again that the test does not depend on the actual value
of 7. The effect of r is indirect — reducing r reduces Npg.



| Model [ Devsetl [ Devset2 [ Joint ‘

R1 54.3 50.1 52.6
R2 64.3 60.1 62.6
R3 73.6 68.8 71.7
R4 20.2 16.0 18.5
RS 54.6 50.1 52.8

Table 2. Recognition accuracy of the various reference models on
the three validation sets.

3. TESTING MULTI-CLASS CLASSIFIERS

The simple test based on binary classifiers described above assumes
that when two classifiers misclassify data, they agree with one an-
other. This is generally not the case for multi-class classification
problems.

The effect of this on the simple test of Section 2.2 is minimal.
Given two classifiers P and R, the probability that they will agree is
now given by tpr = pr+a(1—p)(1 —r), where a is the fraction of
all instances that are misclassified by both P and R,where they agree
(i.e. they both select the same wrong class). The required relation
for t,, to be monotonic in p is r > «/(1 4+ «). Since « can be as
low as 1/(nciass — 1), where mciqss is the number of classes, this
means that the requirement on 7 is less strict than in the case of the
binary classifier where r was required to be greater than 0.5. The
rest of the test does not change.

In the case of the generalized McNemar’s test, the picture is sim-
ilar. Table 1 shows the various possible outcomes and their proba-
bilities. Tr5g now takes the form Trsr = p(1 — q)r + a1 —
p)g(l —7)+a(l=p)(1 —=p)(1 —¢)(1 —r). Similarly Tpopr =
(I =p)gr+Bp(l —q)(1 —7r)+ (1 —a)B(1 —p)(1 —q)(1 — 7).
B = a under the null hypothesis. Consequently, the rest of the test
still applies, with the additional factor that r can be less than 0.5 (and
as low as 1/ncigss-

4. EXPERIMENTAL EVALUATION

We ran a number of experiments to evaluate the predictions made by
the proposed tests on a speech recognition task. The CMU Sphinx-
III speech recognition system was used for all experiments. Since
the form of the proposed generalized McNemar’s test assumes a one-
to-one correspondence between words in the word sequences being
compared, the recognition performances (agreement or accuracy) re-
ported below do not include insertions (deletions were equated to
substitution by a () symbol). We trained five acoustic models using
various corpora. The goal was to determine the relative performance
of the models using untranscribed data. We refer to these models as
the “evaluation” models. The models were trained on two corpora:
the far-field training set of the wall street journal (WSJ) database,
and a Librivox (www.librivox.org) recording of the book “Emma”
by Jane Austen read by Elizabeth Klett comprising 15 hours of data
(which we will refer to as the “L1” data below). The five evaluation
models were:

A: Models trained from Wall Street Journal (WSJ) far-field data.
“A” adapted to the L1 data using 3-class MLLR.

“A” adapted to the L1 data by 12-class MLLR.

“A” adapted to the L1 data by 40-class MLLR.

WY Q%

Models trained entirely on the L1 data.

On Devsetl

Ref. — R1 R2 R3 R4 R5
models | | Acc(%) | Acc(%) | Acc(%) | Acc(%) | Acc(%)
A 37.5 36.4 35.6 18.9 36.8
B 45.6 49.7 50.6 19.9 452
C 47.9 53.2 56.4 20.0 47.5
D 47.8 53.8 58.1 19.8 47.8
E 53.9 63.4 72.9 19.7 54.1
On Devset2
A 36.1 35.2 34.8 17.1 36.1
B 43.4 47.8 49.5 17.5 43.2
C 45.5 51.1 55.0 17.5 45.5
D 45.2 51.0 56.2 17.2 454
E 50.8 59.5 68.6 16.9 50.9
On Jointset
A 37.0 35.9 35.3 18.2 36.5
B 44.8 48.9 50.1 19.0 44 4
C 46.9 52.4 55.8 19.0 46.7
D 46.8 52.7 57.3 18.8 46.8
E 52.7 61.8 71.2 18.6 52.8

Table 3. Agreement percentages between the outputs of recognizers
A-E and the outputs from the reference models R1-RS, on each of
three validation sets.

All models represented triphones as 3-state HMMs with 6000 tied
states, each modeled by mixtures of 8 Gaussians.

As unlabeled validation data we used two more recordings of
Jane Austen’s books from Librivox, both read by Elizabeth Klett:
“Pride and Prejudice” (total running time: 11 hours), which we will
refer to as “Devsetl”, and “Persuasion” (total running time: 8 hours),
which we will refer to as “Devset2”. We also used the combination
of both recordings as a larger validation set, which we refer to as
the “Joint” set. Devsetl had a total of 123923 words, Devset2 had
84503 words and the Joint set had 208426 words.

The accuracy of the tests depends only indirectly on the accu-
racy of the reference recognizer; nevertheless we tried a several ref-
erence recognizers with different accuracies to evaluate the effect of
the reference recognizer:

R1: Models trained on Hub4 97 data.

R2: R1 adapted by to Devesetl using 4-class MLLR.
R3: R1 adapted to Devsetl using 45-class MLLR.
R4: Models trained on Resource Management data.
RS: Models trained on Hub4 98 data.

Reference models R1 and RS are similar, being trained on similar
data. R4 was purposely chosen to be of poor accuracy. R2 and
R3 were obtained by adapting R1 to one of the two Devset record-
ings, in order to adapt them to the speaker (who is the same for
both sets). The intention here was to create two reference models
that had higher accuracy than R1, with R3 being more accurate than
R2. The reference recognizers all used 5000 tied states with 8 Gaus-
sians per state. In all recognition experiments, a trigram language
model trained from two Jane Austen novels, “Mansfield Park” and
“Northanger Abbey” was used.

Table 2 shows the actual accuracies of the various reference
models on the validation sets: Devsetl, Devset2 and Joint. The pe-
formance is as predicted above, with only the difference between R1
and RS being statistically insignificant at the 0.01 level. We did not,
of course, use these known accuracies in our statistical significance



Devsetl | Devset2 Joint
R1 | ABDCE | ABDCE | ABDCE
R2 | ABCDE | ABDCE | ABCDE
R3 | ABCDE | ABCDE | ABCDE
R4 | AEDBC | CBDAE | AEDBC
R5 | ABCDE | ABDCE | ABCDE

Table 4. Summary of decisions made by the reference classifiers
about which of A,B,C,D and E are likely to perform better on a Test-
set, based on recognition of various validation sets. A decision X>Y
is written as XY, and indicates that X performs better than Y. E.g, the
string ABCDE indicates that the rankingis A > B> C > D > E.

tests. To compare the models A-E, the three validation sets were
recognized using the reference models and the evaluation models.
The recognition output of the evaluation models were compared to
the that of the reference model. Table 3 shows the individual agree-
ments beteween the outputs of each of the evaluation models and
the various reference models on each validation set. We note that
Devsetl] is larger than Devset2, and the Joint set is larger than both.

Based only on the comparison of the agreements between the
various reference models and the evaluation models, the rank or-
dering of the various models, as predicted by each of the reference
models is given by Table 4 The various pairwise comparisons in the
table must be accepted if corresponding null hypothesis (that both
models in the comparison are equivalent) is rejected.

In principle, the results of Table 3 should be sufficient to perform
the simple test of Section 2.2. However, we employed the gener-
alied McNemar test to compare the models, for which agreement-
disagreement counts such as Npgg are required. The outcome
of this computation is shown in Figure 1. Each grid in the figure
shows the comparisons between the evaluation models A-E, based
on recognition of a specific validation set, using one of the five
reference recognizers. Each column represents the comparison of a
particular recognizer to the other recognizers. A grey or black box
show that the recognizer for the column shows better agreement with
the reference recognizer than the recognizer for the row. However,
only black boxes represent instances where the null hypothesis that
the two recognizers are actually the same has been rejected with a
confidence level of 0.01. In these cases the tests predict that the
recognizer represented by the column will be superior to that for the
row with a probability of at least 99%.

We note that in the boxes shaded black all tests agree, although
the grey boxes are often inconsistent. We further note that the num-
ber of comparisons about which we can be confident depends on the
accuracy of the reference recognizer. The worst reference recog-
nizer, R4, does not make confident predictions about anything. We
also note that the number of black boxes (confident predictions) in-
creases as the validation set increases in size.

To test if these predictions actually compare to reality, we com-
pared all recognizers on a labeled test set, which was yet another
recording from Librivox: “Sense and Sensibility” by Jane Austen,
also read by Elizabeth Klett. The recording time for this data was
almost 11 hours. The data had 112174 spoken words. Table 5 shows
the recognition results for the various models on the test set. All
differences are significant to the 0.01 level. Note that all of the con-
fident predictions made in Figure 1 are confirmed by the test.

5. DISCUSSION

The new generalized McNemar’s test is observed to be accurate at
making predictions about performance on a test set using only unla-

l | A | B[ CcC ] D] E |
% Acc. | 342 | 470 | 523 | 543 [ SLI
Wds | 38306 | 52717 | 58701 | 60927 | 90990

Table 5. % Accuracy, and number of words correctly recognized in
the test set by various models.

a[s]c[ofE alsfc]ofe alsfc]oe alsfc]ofe
[a] [a] A [a]
(8] (8] B (8]
c c c C
D D D D
E E E E
devsetl, R1 devsetl, R2 devset1, R3 devsetl, R4 devsetl, R5
a[ec[ofE als[c]ofe alsfc]ofe alsfc[ofe als[c]ofe
[a] [a] A [a]
B (8] [ (8]
c c c c
D ) D D
E E E E
devset2, R1 devset2, R2 devset2, R3 devset2, R4 devset2, RS
A|B|C|D|E A|B|C|D|E A|[B|C|D|E A|lB|C|D|E| |A|B|C[D|E
[a] A (A
[s] B B
c c c
D D D
E E E
joint, RT joint, R2 joint, R3 joint, R4 joint, RS

Fig. 1. Predictions and confidence levels obtained from various ref-
erence models on various validation sets.

beled validation data. The predictions are also observed to follow ex-
pected trends. The number of confident predictions it is able to make
increases with the size of the validation data. It also increases as the
accuracy of the reference recognizer improves. Confident predic-
tions are less likely when the recognizers being compared are close
in accuracy. The ability to predict generally follows the expected
trend in the number of words on which one recognizer agrees and
another disagrees with the reference recognizer.

The proposed tests can be improved. We do not consider inser-
tions. The equivalent of MAPSSWE [6], that does consider these
factors, can easily be developed. We also do not have a model for
agreements on misclassification for multi-class data. Generalized
tests that consider these will be presented at a later venue.
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