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ABSTRACT

This paper proposes a new loss function called the “quar-
tet” loss for the better optimization of the neural networks
for matching tasks. For such tasks, where neural network
embeddings are the key component, the optimization of the
network for better embeddings is critical. The embeddings
are required to be class discriminative, resulting in minimal
inter-class variation and maximal intra-class variation even
for unseen classes for better generalization of the network.
The quartet loss explicitly computes the distance metric be-
tween pairs of inputs and increases the gap between the simi-
larity score distributions between the same class pairs and the
different class pairs. We evaluate on the speaker verification
task and demonstrate the performance of the loss on our pro-
posed neural network.

Index Terms— quartet loss, embeddings, neural-networks,
speaker verification

1. INTRODUCTION

In “matching” tasks like text-independent speaker verifica-
tion, the objective is to determine if two given inputs be-
long to the same class or not without explicitly identifying the
class of the inputs. A common approach is to extract class-
discriminative embeddings – representative feature vectors –
from the inputs, which are designed to have the property that
the vectors derived from data instances of the same class clus-
ter closer together than those from data from different classes.
The match/mismatch decision may then be performed simply
by comparing these vectors using an appropriate metric.

The accuracy of the system depends on the quality of the
embeddings; how well they manage to cluster instances of a
class, while separating instances from different classes. Tra-
ditional methods to derive class-discriminative embeddings,
such as linear or non-linear discriminant analysis [1, 2, 3] re-
quire supervision through exact specification of the classes
that must be distinguished. Such supervision is not available
in the verification setting since the class of the instances be-
ing compared is not known, and may not have previously been

encountered. The function that derives the embeddings must
be learned without such explicit supervision.

The most successful methods to derive high-performance
embeddings for verification tasks utilize neural networks.
In the simplest framework, a network employing a linear-
classifier output layer such as a multi-class logistic (a.k.a
“softmax”) is trained with supervision to classify between
a large number of known classes. The representation de-
rived by the network in its penultimate layer, prior to the
application of the final classification layer, is treated as the
embedding derived from the input [4, 5, 6, 7, 8, 9]. For
a well-trained network with high accuracy, the embeddings
for each of its classes will largely lie within convex regions
that are separated from one another. The expectation is that
if a network learns to classify a sufficiently large number of
classes, the discriminativeness of the embeddings it derives
will naturally generalize to other unseen classes as well, such
that the embeddings of data from any class will fall within a
(possibly) convex region that is distinct from regions occu-
pied by other classes. Recent work using numerous variants
of this approach show state of the art results for tasks like
speaker verification, e.g. [10, 11].

Fig. 1: The clusters represent speakers. While the clusters are
well separable by a linear classifier, the distance between two
farther instances within the blue cluster (red arrow) is much
greater than the distance between two close instances from
different clusters (blue arrow).

Regardless of their success, naı̈vely trained neural net-
work feature extractors using the aforementioned approach
demonstrably do not result in the best embeddings for ver-
ification tasks. The reason is that while the approach em-
phasizes the separation of the distributions of embeddings for
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different classes, it does not directly optimize for the direct
comparison of instances to determine if they belong to the
same class. Thus, instances from adjacent classes may be
closer than instances from the same class, even though the
classes are separable, as illustrated in Figure 1. The distance
between the farthest points within a class may be larger than
that between vectors of different adjacent classes, in spite of
their separability.

One identifiable reason for this behavior of the network is
that the multi-class network is generally trained by minimiz-
ing a cross-entropy loss, which only aims to (linearly) sepa-
rate the classes in the embedding space; any further separa-
tion of the classes is only a byproduct of the training process.
In order to address this issue, modified loss functions such
as center loss [12] and angular loss [13] have been proposed
which additionally also try to explicitly increase the separa-
tion between classes. While effective at increasing inter-class
spacing, these too are founded on the expectation that the
statistical characteristics obtained for the embeddings of the
known classes that provide supervision during training will
generalize to novel, previously unseen classes in the test data,
an expectation that does not always hold up.

An alternate, more appropriate approach is to directly op-
timize the network for the task at hand, i.e the comparison
of inputs without explicit reference to their classes. The re-
sulting networks may be expected to be more optimal than
those trained indirectly through a classification task. Such op-
timization can be achieved by using a family of loss functions
which we regard as the “pair-wise” loss functions. The cate-
gory includes those functions which involve computing simi-
larities between embeddings of pairs of inputs, with the objec-
tive of maximizing the similarity of same-class, or “matched”
data instances, while minimizing that of “mismatched” in-
stances that belong to different classes. Some examples of
such losses are the triplet loss [14], contrastive loss [15, 16],
and the quadruplet loss [17].

The ostensible objective of pair-wise losses generally is to
maximize the difference between the similarities of matched
and mismatched pairs of instances. We note that in reality,
however, the actual aim is to minimize the overlap between
the distributions of similarity scores under match and mis-
match (as we explain in Section 2). Directly focusing on min-
imizing this distributional overlap may hence be expected to
result in better generalization of the network than merely en-
hancing the separation of similarities of individual pairs of
matched and mismatched instances. Most already-established
loss functions of the “pair-wise” category, however, ignore or
only make tangential reference to the true underlying objec-
tive, potentially compromising on performance.

In this paper, we propose a new pair-wise loss func-
tion called the “Quartet” loss, which embodies the above-
mentioned objective. Quartet loss attempts to directly in-
crease the gap between the distributions of similarity scores
of matched and mismatched pairs of input. To formulate the

optimization we explicitly consider the types of errors in the
example problem of speaker verification, i.e., missed detec-
tions and false alarms. To make a decision for a given pair of
speech recordings, a similarity score computed between their
embeddings is compared to a threshold. The choice of the
threshold represents a trade-off between missed detection and
false alarm rates. Ideally, there would be a threshold where
both false alarms and missed detections are zero. This hap-
pens when the distribution of similarity scores for matched
recordings has no overlap with that of similarity scores for
mismatched recordings. More generally, reduced verification
errors may be obtained by minimizing the overlap between
the distributions. This is the basis of our work.

We demonstrate the effectiveness of the proposed loss on
the speaker verification task. We train a neural network for
the task and evaluate the performance with and without the
quartet loss introduced in the training process. We show that
the proposed loss achieves the best verification performance,
when compared to a number of baselines.

The rest of the paper is organized as follows: Section 2
outlines the basic problem statement. Section 3 describes the
quartet loss function. Section 4 describes network architec-
ture and settings. Finally, in sections 5 and 6, we present our
experimental results and conclusions.

2. BACKGROUND AND RELATED WORK

The problem of any matching task can be formulated as fol-
lows: given two inputs x1 and x2, we must determine if both
are from the same class or not. Formally, representing the
event that they are from the same class byHs and from differ-
ent classes byHd, we must determine whether (x1,x2) ∈ Hs

or if (x1,x2) ∈ Hd.
To do so, we derive a fixed-length feature fx from each in-

put and compute a similarity score S(fx1 , fx2) between them,
typically either the log likelihood ratio under the hypotheses
Hs and Hd [18], or the cosine similarity between fx1

and
fx2

[19]. If this similarity exceeds a threshold θ, we decide
that the two inputs “match,” i.e., they belong to the same class
(Hs), otherwise we declare a “mismatch” (Hd).

The accuracy of this procedure is critically dependent on
the features fx derived from the inputs, which must be class
discriminative. The key metric is the similarity computed be-
tween inputs. Figure 2 shows probability distributions of sim-
ilarity scores under match and mismatch, P (S(fx1

, fx2
)|Hs)

and P (S(fx1
, fx2

)|Hd) respectively. The overlap between
the two represents the “region of confusion” – input pairs
whose similarity score falls in this region are likely to be mis-
classified. The fraction of all tests that result in an erroneous
outcome depends directly on the overlap area. Hence, to max-
imize verification accuracy, the features fx derived from the
inputs must be such that the two distributions are well sepa-
rated.

Ideally, the function that extracts features from inputs
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Fig. 2: Probability distributions of similarity scores under
match and mismatch.

must aim to separate the distributions of similarity scores
under match Hs and mismatch Hd. Our objective is to de-
velop a neural-network based feature extractor that explicitly
attempts to maximize this separation. We do so through the
quartet loss.

The proposed loss differs from previously proposed pair-
wise losses as we explain here. The contrastive loss, which is
a margin-based loss that only considers pairs of instances at
a time, attempts to “push” mismatched pairs ((x1, x2) ∈ Hd)
apart until a margin m, effectively ignoring the distribution
beyond the margin (which may lie in the overlap region).
In spite of its name, it does not explicitly contrast the dis-
tributions of similarity scores for matched and mismatched
pairs. The triplet loss, which eponymously considers triplets
of instances at a time (arguably improving on the contrastive
loss in this regard), explicitly contrasts the similarity of the
matched pairs to that of mismatched pairs. It maximizes the
expected gap between the similarity of individual “anchor”
inputs to matched (in class) and mismatched counterparts.
While this does improve the separation between the similar-
ity scores for matched and mismatched pairs, it still results
in a relatively large intra-class variation, as observed in [20].
In both cases, it can be shown that the losses effectively
quantify the gap between the means of P (S(fx1

, fx2
)|Hs)

and P (S(fx1
, fx2

)|Hd), the distributions of similarity scores
for matched and mismatched pairs, and minimizing them
attempts to separate the means by the given margin. The
same principle is also captured by the loss proposed in [21],
which maximizes the gap between the average similarities
of matched and mismatched pairs. In all cases, the overlap
area of the distributions is only implicitly (and somewhat in-
cidentally) minimized. The quadruplet loss proposed in [17]
actually consider sets of four inputs at a time. In this regard
it is most similar to our proposed quartet loss; however, like
the other losses described above it only attempts to maxi-
mize the separation between the means of the overlapping
regions of the distributions of similarity scores under match
and mismatch.

In contrast to the above losses, (minimizing) the Quar-
tet loss minimizes the overlap between P (S(fx1

, fx2
)|Hs)

and P (S(fx1
, fx2

)|Hd), or alternately, maximizes the gap
between the distributions of similarity scores under Hs and
Hd, thereby maximizing the gap between the similarity of
matched pairs of inputs for a class and that of any mismatched
pair of inputs for any two classes. In effect, it may be viewed
as an even more conservative loss function than other pair-
wise loss functions.

The exact framework we use is elucidated in the next sec-
tion.

3. FEATURE LEARNING THROUGH QUARTET
LOSS

Let F (x; Φ) with parameter Φ be the function that computes
the feature fx from an input x, i.e., fx = F (x; Φ). Our ob-
jective is to learn F (x; Φ) such that it minimizes the over-
lap between P (S(fx1 , fx2)|Hs) and P (S(fx1 , fx2)|Hd). Let
Ss ∼ P (S|Hs) and Sd ∼ P (S|Hd) represent draws from the
probability distributions of similarity scores under match and
mismatch. The overlap area is equal to P (Ss < Sd). This
area must be minimized.

Formally, let (x1,x2) ∈ Hs and (y1,y2) ∈ Hd be
random pairs of matched and mismatched input pairs re-
spectively. Let SX = S(fx1

, fx2
) be the similarity com-

puted between the matched pair x1 and x2, and similarly let
SY = S(fy1

, fy2
) be the similarity computed between the

mismatched pair y1 and y2. In order to optimize the feature
extraction function F (x; Φ) we must estimate Φ as

Φ̂ = arg min
Φ
P (SX < SY ) (1)

P (SX < SY ) cannot be known, but an unbiased empiri-
cal estimator for it can be computed using the Wilcoxon Mann
Whitney (WMW) statistic [22] on collections of randomly
drawn pairs of matched and mismatched inputs. Represent-
ing the ith randomly drawn matched pair as Xi = (xi

1,x
i
2)

and the similarity score computed from it as SXi
, and the jth

randomly drawn mismatched pair as Yj = (yj
1,y

j
2) and the

corresponding similarity score as SYj , the estimate is

P (Ss < Sd) ≈ 1

NM

N∑
i=1

M∑
j=1

I(SXi < SYj )

where N and M correspond to the number of matched and
mismatched pairs respectively and I() is the indicator func-
tion.

In principle, the estimator

Φ̂ = arg min
Φ

1

NM

N∑
i=1

M∑
j=1

I(SXi
< SYj

) (2)

will give us a feature extractor F (x; Φ) that minimizes the
distribution overlap. In practice, the WMW statistic as given
above only minimizes the expected value of I(SXi

< SYj
).
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To maximize the generalization of the derived features, we
must conservatively optimize the worst case, rather than the
average case, i.e., we must maximize the expected gap be-
tween the similarity score for a match and a worst case simi-
larity score for mismatches.

We therefore define the following extreme value statistic

SK
Y,max = max(Si ∼ P (S|Hd), i = 1, . . . ,K)

where SK
max is the maximum of K random draws from

P (S|Hd). We can now define an empirical loss function:

L(Φ) =
1

N

N∑
i=1

I(SXi < SK
Yi,max) (3)

where SK
Yi,max is the largest of the similarity scores obtained

from a random draw of K mismatched pairs, that are specific
to the ith matched pair. In practice, the indicator function is
not differentiable, so we approximate it as a sigmoid. This
gives us our final loss function:

L(Φ) =
1

N

N∑
i=1

σ(SK
Yi,max − SXi

) (4)

Φ̂ = arg min
Φ
L(Φ) (5)

Note that the sigmoid in Equation 4 can potentially be re-
placed by other monotonic functions such as a RELU, ELU
or leaky RELU in this setting.

4. SYSTEM IMPLEMENTATION

We implement the feature extractor F (x; Φ) for the task of
speaker verification as a convolutional neural network that
operates on spectrograms derived from the audio signal. The
similarity score we optimize is the cosine similarity. We
present the details below.

4.1. Parameterizing the speech signal

The input speech recordings are initially parametrized into a
mel-frequency spectrogram, comprising sequences of log mel
spectral vectors (melspec) [23]. The parametrization uses a
bank of 63 mel-frequency filters, frame length of 25ms and a
frame shift of 10ms. Non-speech regions in recordings are ex-
cised using an energy-based voice-activity detector [24]. The
remaining vectors are mean normalized. During training each
recording length is restricted to a randomly selected contigu-
ous block of 16,383 frames, to conform to the logistical needs
of batch processing. At testing time, entire recordings are
used for the feature extraction.

Table 1: Deep neural network configurations (notation for
convolutional layer: (channel, kernel, stride, padding)).

Setting Detail

ResNet

Conv: (4, 3×3, 2, 0)
Residual block: (4, 3×3, 1, 1)
Residual block: (4, 3×3, 1, 1)
Conv: (16, 3×3, 2, 0)
Residual block: (16, 3×3, 1, 1)
Residual block: (16, 3×3, 1, 1)
Conv: (64, 3×3, 2, 0)
Residual block: (64, 3×3, 1, 1)
Residual block: (64, 3×3, 1, 1)
Conv: (256, 3×3, 2, 0)
Conv: (128, 3×3, 2, 0)
temporal average pooling: entire feature map

Initialization
FC: classification layer
Softmax
Cross entropy loss

Fine tuning quartet loss

4.2. Neural-network feature extractor

Our feature extractor is a convolutional neural network
(CNN), with a residual network structure [25]. The net-
work comprises a set of five “naı̈ve” convolutional layers,
augmented by several residual blocks. A residual block con-
tains two convolutional layers in our experiments – this was
found to be optimal. Table 1 shows the configuration detail
of our system.

Result: (match-pairs, mismatch-pairs)
# Si is set of all recordings for speaker i
Si = {x(i)

1 , . . . } for i = 1, . . . Z;
# S is the set of all speakers
S = {S1, S2 · · · , SZ};
match-pairs← {};
mismatch-pairs← {};
for l← 1 to P do

Si ← sample-without-replacement(S);
x(i) ← sample-with-replacement(Si);
match-pairs← match-pairs + {(x(i)

1 , x
(i)
2 )};

Sp, Sq ← sample-with-replacement(S);
x(p) ← sample-with-replacement(Sp);
x(q) ← sample-with-replacement(Sq);
mismatch-pairs← mismatch-pairs + {(x(p)

1 , x
(q)
2 )};

end
Algorithm 1: Mini-batch creation
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Result: loss
loss = 0;
match-pairs = {xi1, xi2}Pi=1;
mismatch-pairs = {yj1, y

j
2}Pi=1;

for i← 1 to P do
SXi
← similarity-score(xi1, x

i
2);

SK
Y,max ← max[similarity-score(yi1, y

i
2)]

j = 1 . . .K;
loss← loss + σ(SK

Y,max − SXi);
end

Algorithm 2: Loss calculation. similarity-score used in our
experiments is cosine similarity and σ for the best setup is
the sigmoid function

4.3. Training the network

Initializing the network well is critical. We initialize the net-
work by adding a softmax classification layer at the top to
classify between all the speakers in the training set. This is
trained for several epochs (70 in our experiments) to mini-
mize the cross-entropy loss. Thereafter we remove the final
classification layer and switch to the proposed quartet loss,
and continue training for several additional epochs. We use
stochastic gradient descent (SGD) with mini-batches of size
128. Momentum and weight decay are set to 0.9 and 0.0001
respectively which was found to be optimal.

4.4. Sampling for mini-batches

We organize the sampling of mini-batches as follows. Within
each minibatch, we first choose P matched pairs of record-
ings, from P randomly chosen speakers. Subsequently, for
each of the P pairs, we randomly draw K mismatched pairs
of recordings. In our experiments we set K = 40. From
these K recordings, we select the pair with the highest sim-
ilarity score. The matched and mismatched scores together
then feed into our loss. Note that the result is that for each
entry into the loss function, four speech signals are consid-
ered. In our experiments, P was set to 32, resulting in 128
speech recordings per minibatch. Speakers and matched pairs
are sampled without replacement. All other sampling is with
replacement. Note that the computation only requires a sin-
gle forward and backward propagation of individual training
instances within each batch. Since this is the primary compu-
tational expense during training, the computational expense
of optimizing the quartet loss is comparable to that of other
losses within each minibatch. The pseudo-code for forming a
minibatch is explained in Algorithm 1.

5. EXPERIMENTS

5.1. Data description

For training, we use the dataset published by the NIST
speaker recognition evaluations (SRE). Our training set con-
sists of several previous SRE sets from year 2004, 2005, 2006
and 2008, with a total of 36612 utterances and 3805 speakers.

Our evaluation set is SRE10 consisting of 7169 match
pairs and 408950 many mismatch pairs, with a total of
416,119 trials. Our experimental results are reported on
these trials.

5.2. Results

As noted in Section 4, the loss function in Equation 4 can
employ a variety of approximations for the indicator func-
tion. We test different approximation functions in our loss in-
cluding the Sigmoid, ELU and the LeakyReLU. All networks
are identically initialized. While the actual loss is optimized
using the cosine similarity metric, final verification employs
PLDA [26, 27, 18, 28] scoring. The lowest EERs for the Sig-
moid, ELU and LeakyRelu activations are 2.85%, 2.86% and
3.13% respectively. The EER for Sigmoid and ELU are the
same on the last iteration, however based on the lowest EER
achieved, we refer to the one with Sigmoid as our best system.

Fig. 3: EER for cross-entropy loss and quartet loss.

We also compare multiple approaches. Firstly, we con-
tinue training the initial CNN with the cross-entropy loss
(with the final classification softmax layer) for an additional
50 epochs. This corresponds to the traditional approach of
using CNNs for feature extraction [29]. In the comparators,
we switch to optimizing using the proposed quartet loss (after
removing the softmax layer) after the preliminary 70 initial
iterations with the cross-entropy loss. Figure 3 demonstrates
the EER trend for cross-entropy loss and quartet loss. We
observe that cross entropy doesn’t improve performance and
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even seems to result in overfitting. By contrast, our loss
decreases EER, especially for the ELU and Sigmoid approxi-
mations.

Secondly, we compare quartet loss with triplet loss. The
network architecture and initialization are identical to those
used for the quartet loss. The CNN is also optimized on the
triplet loss using the best performing margin value. An EER
of 3.32% is achieved with the margin of 0.2. As Figure 4
shows, the quartet loss, with its EER of 2.846% outperforms
triplet loss.

Thirdly, we compare our approach with CLNet architec-
ture proposed in [30], which was shown to achieve the best
results for neural-network based feature extraction when used
as an ensemble of three nets. As shown in Figure 4, our
method greatly outperforms a single CLNet. We believe the
gains will carry over to ensembles of quartet loss trained net-
works as well.

Finally, we implement the x-vector architecture as pro-
posed in [10], using the recipe described therein. X-vectors
have proven to be successful neural network embeddings
for the speaker verification task on short audio files, and are
among the current state-of-the-art architectures for the task.
The performance shows that the embeddings trained using
the quartet loss are able to achieve better on the verification
task.

Fig. 4: DET curves of x-vectors, triplet loss(m=0.2), CLNets
and our best system.

6. CONCLUSIONS

In this paper, we propose a quartet loss function to derive
embeddings for verification tasks. The quartet loss explic-
itly maximizes the overlap between the similarity-score dis-
tributions for matched and mismatched pairs of inputs. In
effect this accomplishes the task of increasing the inter-class
variation and decreasing the intra-class variation of embed-

dings. We evaluate the loss on the speaker verification task.
Experimental results indicate that our loss function achieves
better results than other similar losses in terms of separat-
ing score distributions, resulting in improved verification, for
minimal additional computational overhead. We note several
avenues for future work, including the investigation of differ-
ent sampling strategies and similarity metrics to optimize the
network. [17] has inspired us to look at an adaptive margin
approach which we also aim to incorporate in the loss. Specif-
ically, within the verification task, we expect to fine tune the
x-vector architecture [10] with quartet loss and exceed the re-
ported performance.
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