
LANGUAGE IDENTIFICATION USING SPECTRO-TEMPORAL PATCH FEATURES 

 

Kamal Sahni
1
, Pranay Dighe

1
, Rita Singh

2
, Bhiksha Raj

2 

 

1. Indian Institute of Technology, Kanpur, India {skamal, pranayd}@iitk.ac.in 

2. Carnegie Mellon University, Pittsburgh, PA, USA {rsingh, bhiksha}@cs.cmu.edu 
 

ABSTRACT 
 

We present a novel approach for automatic Language 

Identification (LID) using spectro-temporal patch features. Our 

approach is based on the premise that speech and spoken 

phenomena are characterized by typical visible patterns in time-

frequency representations of the signal, and that the manner of 

occurrence of these patterns is language specific. To model this, 

we derive a randomly selected library of spectro-temporal patterns 

from spoken examples from a language, and derive features from 

the correlations of this library to spectrograms derive from the 

speech signal.  Under our hypothesis, the relative frequency of 

correlation peaks must be different for different languages. We 

model this by learning a discriminative classifier based on these 

features to detect the presence of the language in a recording. The 

proposed approach has been tested on two different datasets: the 

VoxForge multilingual speech data and the LDC2005S26 corpus. 

Preliminary results indicate that our proposed approach can 

achieve an accuracy of 85-93%, and perform significantly better 

than a non-phonetic HMM-based classifier. 

 

Index Terms— Language identification, Spectro-temporal 

patches, Discriminative classification. 

 

1. INTRODUCTION 

 
Language Identification is a problem of identifying the language in 

a spoken utterance. It has many applications, such as for 

categorization of audio material, front-ends for multilingual speech 

recognition systems, automatic customer routing in call centers of 

different companies etc.  

 

The most successful approaches to automatic language 

identification thus far have explicitly utilized the phonotactic 

structure of the spoken language. For instance, phone-recognition 

based approaches [1], [2] compute the score for any language 

through a phoneme recognizer that is guided by an N-gram 

language model for the phonemes in the language. Parallel phone 

recognition based techniques [3], [4] go a step further and 

simultaneously recognize the speech using models phoneme 

recognizers for multiple languages, and utilize the ensemble of 

outputs to identify the language. LVCSR based systems perform 

entire large vocabulary recognition [5]. In each case, the 

identification of the language is based on matching entire 

phoneme-level spectral patterns in the incoming speech to known 

patterns for the language to identify it. 

 

Regardless of the success of phoneme-based methods, it is 

generally also acknowledged that information about the identity of 

the language is also present in the spectro-temporal patterns in the 

signals, evidenced partially by the fact that humans can often 

identify a language even when they do not have a working 

knowledge of the language.  Consequently, a large number of 

purely acoustics based methods for language identification have 

also been proposed in the literature. GMM-based methods [7] only 

model the distribution individual spectra of recordings from the 

signal. However, even acoustically, it is generally understood that 

the information actually lies in longer-range patters. Consequently 

Pedro et. al.[8] have modeled the sequence of Gaussian indices 

obtained for individual frames of a recording from a GMM. Ma et. 

al. [9] use automatically defined Acoustic segment units to model 

the distinction between languages. In all of this too, the patterns 

that are modeled are still spectrally complete – they only vary in 

their temporal extent.  

 

In this paper we propose to exploit an entirely different scale of 

feature. We hypothesize that the information about the underlying 

message in a speech signal also lie in local spectro-temporal 

patterns in the signal. A significant aspect of the distinction 

between different languages lies in the nature and manner of 

occurrence of these patterns. By appropriately characterizing the 

patterns and the rate and manner in which they occur, we can 

therefore expect to identify the language being spoken. We note 

that a similar hypothesis has previously also been explored by 

Ezzat et. al.[6] for word spotting. 

 

The above hypothesis would argue that in order to identify the 

spoken language properly, we must therefore know about the 

spectro-temporal patterns in all candidate languages that may have 

been spoken. However, motivated by the fact that humans can 

often detect a segment of familiar sounding language even in the 

midst of a stream of otherwise unrecognizable gibberish,  we posit 

the problem differently: as one of merely determining if the 

patterns typical for a given language occur or not. Thus our 

solution is more appropriately called language detection rather than 

identification. 

To learn the spectro-temporal patterns and their occurrence 

patterns automatically, we use an approach similar to that in [6]. 

We derive a large number of randomly chosen spectro-temporal 

patterns from examples of the language. We characterize the rate 

of occurrence of each of these patterns through their correlation to 

spectro-temporal representations of the signal. Finally, a 

discriminative classifier employs these characterizations as 

features for classification. 

 

Preliminary results on two different databases indicate that the 

proposed approach is able to perform very accurately on detecting 

a target language even in snippets of speech that are 10 seconds or 

shorter in length. A comparison with an alternative acoustics-only 

baseline using ergodic HMMs and conventional MFCC features 

shows that the proposed approach is in fact significantly superior 



to the HMM-based method. Presumably, combining the two could 

result in even better performance. 

 

The rest of the paper is arranged as follows. In Section 2 we 

describe the overall rationale behind the use of spectro-temporal 

patterns for language identification. In Section 3 we outline our 

mechanism for learning spectro-temporal patch dictionaries. In 

Section 4 we describe how we use these to derive features from the 

speech data. Section 5 describes our classification strategy, Section 

6 presents our experiments and in Section 7 we give our 

conclusions. 
 

2. RATIONALE BEHIND SPECTRO-TEMPORAL 

PATCHES FOR LANGUAGE IDENTIFICATION 
 

2.1. The information in speech is represented in its spectro-

temporal patterns 
 

It is well known that the identity of a speech sound is evident from 

the spectro-temporal patterns in spectrographic representations. In 

fact, many early speech recognition systems attempted to utilize 

this characteristic by explicitly attempting to “read” the 

spectrogram. Later research veered away from this approach to 

frame-based statistical characterizations that only explicitly 

represented the spectral characterizations, leaving the 

representation of temporal characteristics to an underlying Markov 

chain in a hidden Markov model.  

Although several researchers have attempted to revisit explicit 

spectro-temporal characterizations, these approaches have largely 

not resulted in significant improvement over the HMM approach, 

primarily because they remained tied to a state-based 

characterization [SSMs] or to length restrictions in patterns 

[STMs] and also generally ignored the fact that the patterns in the 

speech spectrogram include both frequency-localized long-term 

patterns that extend over several tens of milliseconds and short-

term patterns that are local not only in frequency, but also in time. 

Yet it remains true that the typical local patterns such as formant 

trajectories etc. in spectrograms remain visible even in high levels 

of noise, even when the individual spectral vectors in the signal are 

corrupt beyond recognition. It also remains true that these patterns 

characterize nearly the totality of the information in the speech 

signal, including the identity of the underlying phonemes, the 

speakers, and the language being spoken. 

 
2.2. Characterizing speech through local spectro-temporal 

patterns 
 

In this paper we therefore revisit the use of explicit 

characterizations of spectro-temporal patterns in the speech signal 

to perform pattern classification tasks on speech, specifically that 

of identifying language.  

 

Our approach is based on the following observations:  

a) The identity of the sound in any speech recording is encoded 

in the spectro-temporal patterns that occur in it. 

b) These patterns are local in the time-frequency plane. 

c) The identity of a language is encoded in the pattern of 

occurrence of these patterns. 

 

We will, however not attempt to identify the specific patterns that 

are most useful. Instead, we will hypothesize a large number of 

them and determine their relevance to the task at hand in a data 

driven manner. 

 

3. SPECTRO-TEMPORAL PATCH DICTIONARY 

As mentioned above, we do not attempt to identify the most 

relevant spectro-temporal patterns explicitly. Instead, we 

hypothesize a large number of candidate patterns, all of which are 

likely to carry relevant information. 

 

To represent the spectro-temporal patterns in any language, we 

create a patch dictionary, consisting of randomly chosen 

rectangular spectro-temporal patches of random sizes, from the 

spectrogram of a relatively small amount of exemplar training data 

from the language.  These patches are extracted from random 

locations in time and frequency in the spectrograms of the 

exemplar data. The height and width of each patch (representing its 

span along the frequency and time axes) are chosen randomly from 

a spectral range Frange and a temporal range Trange respectively. 

Finally, all patches with a total energy below a threshold are 

discarded, to ensure that all patches that are extracted have some 

energy in them; otherwise we might end up with a lot of empty 

patches that carry little or no acoustic information. The remaining 

patches are stored in the dictionary along with the frequency 

location from where they were derived. Figure 1 illustrates some of 

the types of patches we draw. Given a sufficiently large number of 

patches, several of them will capture many types of typical spectro-

temporal phenomena, such as formant ridges/sweeps, harmonic 

lines, noise patterns, etc., some of which will be characteristic of 

the language. 

 

4. PATCH BASED FEATURE EXTRACTION 

The library of spectro-temporal patches can now be used to derive 

features from any spectrogram.  We employ each of the patches as 

a matched filter on the spectrogram. We correlate the patch with 

the entire strip of the spectrogram that represents the same 

frequency range as the patch. Peaks in the correlation indicate 

matches, indicating occurrences of the patch. Enumerating these 

gives us an indication of the rate of occurrence of the patch within 

the spectrogram.  This is illustrated in Figure 2. Let Pi(f,t) represent 

the i-th patch in our library. Let there be M patches in our 

dictionary.  Our extracted patch dictionary can hence be 

represented as P = {Pi(f,t) : i = 1...M}. We will now use this 

dictionary to compute the feature vector for any speech recording. 

 

Let S(f,t) represent the (t,f)th component of the spectrogram of a 

signal s. Let T be the total length of the spectrogram. Let Wm and 

Fig 1. Sample patches from a spectrogram 



Hm be the width and height of the mth patch in the dictionary. Let 

Fm be the frequency location from which it was drawn. 

 

In order to compute a match between Pm(f,t) and the signal s, we 

compute the cross correlation between Pm(f,t) and the portion of 

the spectrogram S(f,t) that covers the same frequency range as 

Pm(f,t), i.e. the sub-spectrogram Sm(f,t) = S(f,t) | Fm<= f <=Fm+Wm. 

In principle, this could be computed very fast using a 2-D fast-

Fourier transform, however such a computation would ignore local 

variations in signal level differences and results in poor 

characterization of the signal. Instead, we use a normalized 2-D 

cross-correlation to characterize the match. Moreover, in order to 

account for the fact that the precise location of spectrographic 

pattern along the frequency axis may vary from speaker to speaker, 

depending on their gender, the length of their vocal tract etc., it is 

not sufficient to merely compute the correlation in the frequency 

range Fm instead we consider an extended frequency range  

(Fm –Δf/2, Fm+Δf/2), and use the peak correlation within this range 

as the overall normalized cross correlation at each instant. 

 

Thus, for the the patch Pm(f,t), we obtain the normalized cross-

correlation at any time tn as: 
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and where  ̅      is the mean of the spectrographic region given by   

S(f,t) | F<= f <=F+Wm and  ̅ is the mean of the patch. 

 

This results in a sequence of Cm(t) values representing to the 

normalized cross correlation function between Pm(t,f) and S(t,f) and 

is a series of cross-correlation values. From this series 3 numbers 

are computed: the mean, the variance, and the number of times it 

exceeds a threshold of 0.6 per unit time, representing the rate of 

detection of the patch. These three values are derived for every 

patch in the dictionary. Thus, for a dictionary with M patches we 

derive a 3M dimensional feature vector for every speech recording. 

 

5. DISCRIMINATIVE CLASSIFICATION via SVM 

 
As mentioned in the introduction, we actually perform a binary 

language detection task, rather than multi-class language 

identification; however the procedure is easily extended to multi-

class classification as well. The 3M dimensional patch-based 

features are now used in a discriminative classifier. We obtain a 

collection of within-language and out-of-language recordings as 

positive and negative exemplars, derive feature vectors for all of 

these, and train a support-vector machine [10] from the collection. 

The theory of support vector machines is well known and need not 

be repeated here. Thereafter, for each test utterance that must be 

classified as being from the target language or not, we derive a 3M 

dimensional feature vector as described and classify it using the 

SVM.  In our experiment we used a VM with a linear kernel. 

 

6. EXPERIMENTAL RESULTS 
 
We evaluated our proposed technique on two corpora:  The 

LDC2005S26 corpus obtained from the Linguistic Data 

Consortium (LDC), from which we used the English, Hindi, 

German and Farsi subsets as our data, and a VoxForge multilingual 

dataset obtained from voxforge.org from which we obtained 

English and Russian. The LDC data is quite noisy data and 

recorded over a telephone, whereas VoxForge data are 

comparatively clean in terms of background noise etc. 

 
6.1 System Parameters 

 

Spectrograms were computed as log-magnitude short-time Fourier 

transforms with 25ms analysis windows and 6.25ms frame-shifts. 

For our experiments the temporal range used for the width of the 

patches was [0.1, 0.6] sec. The spectral range used was Fmax[0.1, 

0.4], where Fmax is the highest frequency in the spectrogram. In all 

experiments, the patch dictionary was composed from positive 

speech examples from approximately 15 minutes of data from the 

language to ensure good variability in terms of sounds present in 

the language.  

 

To train the SVM an additional 80min each of within-language and 

out-of-language data were used. For all tests, 30 minutes each of 

within-language and out-of-language data were used. In all 

experiments, the data were chopped into segments of no more than 

10 seconds in length. It is therefore worth noting that all reported 

results are from segments of speech that are no more than 10 

seconds at a time, and are often much shorter. 

 
6.2 Effect of Dictionary Size 

 
Since patch based features are crucial for our methodology, in a 

preliminary experiment we analyzed the effect of dictionary size 

on this language identification. Here we employed the LDC corpus 

and trained the classifier to detect English. All other languages 

were treated as negative instances. Results were obtained for 

different numbers of patches in dictionary. The number of patches 

extracted was varied from M = {300, 600, 1000, 1500, 2000, 2500, 

3000, 4000, and 5000}.  Figure 3 is a plot of EER (equal error rate) 

as a function of the number of patches. Clearly as Dictionary size 

increases, error decreases and the performance of the classifier 

increases. In subsequent experiments we used a dictionary size of 

4000 patches. 
 
6.3 LID results on LDC data 

 

In the next experiment we used the four languages in the LDC 

corpus. We used 4 languages from LDC: English, German, Hindi 

and Farsi. We made 4 SVM based binary classifiers, designed for 

detection of each of the four languages. 

 

For each language, patch-composition, training and test data were 

set up as described in Section 6.1.  For each language, the negative 

data were assumed to comprise the remaining 3 languages. Data 

used to learn the patches were not used to train the classifiers. 

Fig 2. Patches are correlated against the strip of the 
spectrogram from the same frequency range (the black 

rectangle). Peaks in the correlation indicate occurrences. 



 
Fig 3. Equal Error Rate (%) vs Number of Patches 

 

As a comparator, an identical language detection framework was 

set up using Hidden Markov Models [11].  Mel-frequency 

cepstrum features combined with delta features were used for this 

experiment. 

Receiver Operating Characteristics (ROC)s were plotted for both 

classifiers, by comparing the distance from boundary (in the case 

of the patch-based system) and the difference in log-likelihoods to 

a varying threshold in both cases.  The ROCs for the patch-based 

and HMM-based classifiers are shown in Figure 4.  Language 

detection performance is distinctly superior for the patch-based 

system.   

 
Fig 4. ROC plots (Missed Detection Rate vs False Alarm Rate) for LID of 4 

Different Languages: English, Farsi, German and Hindi using Patches(left) 
and HMMs(right) 

 
Fig: 5. ROC Plot (Missed Detection Rate vs False Alarm Rate) for LID of 

English using Positive test Data from 4 Different Speakers of English and 

Negative Test Data from Russian 

 
6.4 LID for different users speaking a particular language 

 

The VoxForge multilingual dataset includes speech examples for a 

number of users. For this data we built a detector for English – we 

note however that since there are only two languages in the corpus, 

this reduces to a relatively simple binary classification task; 

nevertheless the classification task: English vs. Russian does 

provide some additional information. Additionally, the test 

provides a measure of performance on broadband data, and is 

particularly useful since one of our test speakers had a distinctly 

non-native accent, thus giving us an idea of the consistency of 

spectral-pattern based classification across accents. Also, the 

difference in performance between the patch-based and HMM-

based systems may be expected to carry over to larger tasks. 

The training data included 2 males and 1 female speaker with 

typical American accent. The test data included 3 male speakers 

(kal_ldom,rms_arctic, jmk_arctic) & 1-female (slt_arctic_female2) 

speaker with typical American accent, and 1 male 

(arctic_Indian_accent) with an Indian accent. The negative data, 

both for training and test had a number of speakers of both gender. 

The ROCs for the performance obtained with the patch-based 

system, and the corresponding HMM-based baseline are given in 

Figure 5. Once again, the patch based system is the clear winner. 

  

7. CONCLUSIONS AND FUTURE WORK 

 
We present a novel language identification technique based on 

characterization of the relative frequency of occurrence of spectro-

temporal patterns. Experiments show that this technique can 

provide significantly superior performance to corresponding 

HMM-based classification. We believe that it can be combined 

with conventional phoneme based systems to result in even 

superior performance.  

The performance of our technique can be significantly improved 

over the reported result – we have not investigated optimization of 

spectro-temporal representations.  A particular feature of our 

approach is that it can work with very short segments of audio. 

Thus is a particularly promising tool to detect code switching. 

These, and the extension to multi-class classification, are 

objectives of future work. 
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