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ABSTRACT

This paper presents a novel method for deriving patterns for classi-
fication of speech sounds. In contrast to conventional methods that
attempt to capture time-frequency patterns as represented by spec-
tral envelopes or peaks, our method captures patterns of high-energy
tracks, or seams, of maximum “whiteness” across frequency in spec-
trograms. Our hypothesis is that these seams could potentially carry
relatively invariant signatures of underlying sounds. We present a
method to derive feature vectors from seam patterns for discrimi-
native word spotting. We show experimentally that spectrographic
seam patterns are indeed distinctive for different spoken words, and
are effective for word spotting.

Index Terms— Spectrographic Patterns, Seam Carving, Key-
word Spotting, Speech Processing, Hough Transform.

1. INTRODUCTION

Speech recognition systems, and indeed most speech processing ap-
plications, attempt to derive, model and classify some basic pat-
terns that characterize units of sound (such as words, syllables or
phonemes) that comprise human speech. These patterns are en-
capsulated in the type of features derived from the speech signal.
Different feature representations attempt to capture different aspects
of sound-specific patterns in speech. For example, cepstral features
represent smoothed spectral envelopes, features based on linear pre-
diction analysis (LPC) attempt to emphasize and capture spectral
peaks, with the generally accepted hypothesis that spectral peaks are
relatively more characteristic of underlying sounds, while spectral
valleys are often affected by noise and carry less classification infor-
mation. In general, conventional wisdom has been to derive features
from spectrographic energy variations, be it peaks or envelopes.

Without negating this conventional wisdom, we analyze a differ-
ent trend in time-frequency representations of speech sounds: that in
continuous high-energy tracks across frequency. Although locality
in time is enforced through continuity constraints, the overall tracks
can nevertheless span a window of time. We call such a path or
trajectory a seam. Our core hypothesis is that seams could be least
variant across sounds of the same type of sound, and different across
different sounds. This paper investigates this hypothesis by analyz-
ing seam patterns across different sounds, specifically spoken words,
in controlled experiments.

Seams are not new concepts. In fact, seams of information
across images have been effectively used in image processing for
resizing or enlarging images, and for changing image content non-
linearly without affecting the overall image quality. An extremely
successful image processing technique based on seam analysis is
called Seam Carving [1]. The technique derives seams through
simple dynamic programming across the image plane.

Our method derives from Seam carving, but is more adapted to
speech spectrograms. For example, since spectrograms are more tol-
erant to fine-grained variations in texture, the seams can be smoothed
e.g., through a smoothing filter, to yield smoother patterns. Features
for each word are then derived using a slight variant of the Hough
transform, in a manner similar to edge-detection in images. We then
build a discriminative classifier for these features using Support Vec-
tor Machines (SVMs) to distinguish between target and non-target
words in a simple word-spotting task.

The rest of this paper is arranged as follows: in Section 2 we
present the basic spectrographic seam pattern analysis approach. In
Section 3 we show how seam patterns can be used to derive fea-
tures and used for word spotting tasks. In Section 4 we present our
experimental results, contrasting them with word spotting based on
conventional and alternate spectrographic representations from re-
cent work. In Section 5 we present our conclusions.

2. SPECTROGRAPHIC SEAMS IN SPEECH

For quite a while digital media has had the ability to support dynamic
page layouts. By changing the window display size, one changes
the layout of the document. However images could only be scaled
linearly, often with bizarre results. This changed when Shai Avidan
et al. [1] came up with an interesting idea of content aware resizing
of images. Their technique was called “Seam carving”, and provided
a mechanism for resizing images without affecting the aspect of their
content. Seam carving functions by establishing a number of seams
(paths of least importance) in an image. These can then be removed
to reduce image size, or inserted into the image to enlarge it. On an
image, depending on the resizing or restructuring goal, seams can
be generally horizontal, vertical or differently directed in complex
trajectories (e.g. a vertical seam is a path of pixel connected from
top to bottom in an image with one pixel in each row).

Audio recordings can conveniently be represented in image
form, spectrogram being one of the most common. A path or tra-
jectory on a spectrographic image is defined as a set of connected
pixels, and a seam is defined at a trajectory that has the maximum
line-integral value. Thus a seam represents a path of maximum spec-
tral “whiteness”, or, since whiteness in a spectrum can be related
to uncertainty, of maximum uncertainty. However, such paths can
be valuable in a pattern recognition sense, since they represent key
trends in the underlying image.

2.1. Computing seams

In standard image processing, several types of energy functions can
be used for seam computation, e.g. gradient magnitude, entropy,
visual saliency, eye gaze movement etc. On a spectrogram, each
pixel corresponds of a time-frequency bin and represents an energy



Fig. 1. Low information trajectories are consistent across different
instances of a word, but are different across words. 50 seams on two
different words - ”Elephant” (left 3) and ”Tiger” (right 3)

value. Accordingly, we use an energy function for seam computa-
tion, where we maximize the energy of each bin along the seam.

Seams are computed using a simple dynamic programming tech-
nique. In this, an element of the spectrogram is identified by its po-
sition (i, j) in a 2-D matrix of the spectrogram, where i denotes the
row index and j denotes the column index. We use just three pa-
rameters while computing the seams - element energy denoted by
E[i, j], cumulative energy leading up to that element, denoted by
C[i, j], and path matrix, denoted by P [i, j], which stores a variable
that directs us to previous element’s index.

C[i, j] = E[i, j] + max
k∈[j−2,j+2]

C[i− 1, k] (1)

At the end of this process, the maximum value of the last row of
matrix C indicates the end of the maximum energy containing seam.
In the final step, we backtrack from this maximum cumulative en-
ergy cell to find the required seam. For ease of description, we will
continue to call this seam discovery procedure “seam carving” in the
rest of this paper.

The original seam carving algorithm considers only three neigh-
bors for calculating seam paths, as paths had to be connected while
removing or inserting seams in an image. Here we opted to consider
5 neighbors as this tends to capture energy variation more explicitly.

2.2. Seam smoothing

Since a spectrogram is much coarser in the information it represents
per pixel and in pixel continuity than a standard image of the same
size, the seams obtained on a spectrogram are usually jagged. To
smooth these out, we use a very basic smoothing filter where a linear
penalty is now imposed while computing the seam’s path as follows:

C[i, j] = E[i, j] + max
k∈[j−2,j+2]

Pen[i, k].d.C[i− 1, k] (2)

where d is deviation distance and Pen[i, k] is a penalty factor that
depends on i− k.

The penalty imposed not only smoothen the seams, but also
forces the seams to not change tracks unnecessarily. Seams are thus
rendered more robust in spatial location on the spectrogram. In ex-
periments we noted that penalty values need to vary from keyword to
keyword, as some keywords yield smoother seams than others. How-
ever, over-penalizing can cause the seam to deviate from its original
shape, which is not desirable.

2.3. Fixing the origin

The seams computed are time invariant. There is thus a need for
choosing an origin within the seams to enforce uniformity to seams

Figure 2. Effect
of penalty on seam
smoothness. Seams
in the right panel are
penalized.

obtained from every window. To find this origin we use an approach
very similar to finding centre of mass of a given body. Xi are the
bin index in time domain, and Cx gives us the location of our origin
(in time domain). For the frequency domain or our origin we simply
choose the top first row of the spectrogram.

Cx =

∑
iMiXi∑

iXi
; Mi =

{
1 for elements on seams

0 otherwise
(3)

By using this formula, we ensure that that the number of elements
that is part of a seam are equally distributed on the two sides. This
becomes necessary further, when we use a Hough Transform to ex-
tract features for classification from these seams.

3. DERIVING FEATURES FROM SEAMS

Our seam carving algorithm finds a large collection on low-variance
seams from spectrograms. The spectrograms are conventional log-
magnitude wide-band spectrograms computed using a 25ms analysis
window with 10ms frameshift. The individual seams can vary from
instance to instance and are not individually useful; rather it is the
ensemble that carries information relevant to classification. We use
the Hough transform to capture the characteristics of this ensemble.

3.1. The Hough Transform

The Hough transform [2] is a classic feature extraction technique
used to identify, or more generally characterize lines and linear struc-
tures in images. The basic premise behind the transform is that any
line in an image can be represented as a pair of coordinates (r, θ),
where r is the length of the normal from the line to the origin and
represents the distance of the line from origin, and θ is the orien-
tation of the normal with respect to the X-axis. The relation be-
tween the x and y coordinates of any point on the line is given by
xcosθ+ysinθ = r. Viewed alternately, given a pointX = (x, y) in
an image, the set of all lines that pass through X can also be param-
eterically represented in polar coordinates by the sinusoidal curve

Fig. 3. All lines through the pointA in the left image are represented
by the red curve in the (r, θ) plane in the right image. All lines
through B are represented by the blue curve. The intersection of the
two curves I represents the line that goes through both A and B.



Fig. 4. The collection of seams in the left panel is transformed to the
Hough transform in the middle. The central region of this transform,
shown to the right, is retained as the feature representing the audio.

SX(r, θ) given by the relation xcosθ + ysinθ = r. The curve is
unique to X . Given two point X1 = (x1, y1) and X2 = (x2, y2),
the line that passes through both points is represented by a single
point in the r − θ plane, corresponding to the intersection of the
curves SX1 and SX2 . This is illustrated in Figure 3. The Hough
transform builds on this observation. The transform itself is rep-
resented in the (r, θ) plane, where θ ∈ [−π/2, π/2) and r ∈ R.
The transform was originally intended to help identify lines and
collinear points, e.g. edges in images. For every candidate point
Xi in the image (where by “candidate” point we refer to points
that have, somehow, been identified as possibly belonging to a fea-
ture such as an edge), the corresponding curve SXi(r, θ) is plotted
on the plane. The contributions of curves derived from individual
points is additive. Thus, if the curves corresponding to K candi-
date points SXi(r, θ), i = 1 . . .K intersect at some point (R,Θ)
in the (r, θ) plane, the transform H(R,Θ) = K. Also, conversely
if H(R,Θ) = K at some (R,Θ), then it represents K candidate
points in the image that are collinear. In practice, the Hough trans-
form quantizes the (r, θ) space. The output of the transform is a
matrix, whose axes represent quantized r and θ.

3.2. Characterizing seams through the Hough transform

A Hough transform that is computed over a large number of candi-
date points, when viewed as an image itself, will exhibit several re-
gions of high intensity and others of low intensity. The high intensity
regions represent groups of collinear points, where the higher the in-
tensity, the larger the number of points in the group. Regions of low
intensity represent small sets of points that are mutually collinear,
but not aligned to other points. The complete transform therefore
encodes the overall arrangement of the candidate points.

To characterize the collection of seams obtained from a spectro-
gram, we therefore compute a Hough transform from all points on
all detected seams. This is illustrated in Figure 4. We make two
adjustments. First, the origin of the transform is taken to lie at fre-
quency = 0, and at the time location that represents the horizontal
center of mass of all points on all seams (which is computed as ex-
plained above). Second, the majority of the regions in the transform
are relatively low in intensity and contain little information about
the overall seam pattern. We therefore only retain the central region
of the transform as also illustrated in Figure 4. The retained cen-
tral portion of the Hough transform is a matrix of numbers, which is
unravelled into a “seam-hough” feature vector.

4. CLASSIFICATION

Classification is performed using a Support Vector Machine (SVM)
[3]. To train the SVM we compute seam-hough features from several
segmented out instances of the word as positive exemplars. Negative

training exemplars are seam-hough features obtained from randomly
drawn segments of speech from recordings that do not contain the
target word. The width of negative examples is distributed similarly
to that of positive examples.

For the ROC curve of Figure 5 we merely classified segmented
instances of words using the SVM. For the larger task of word spot-
ting we computed features from and classified a sliding window,
whose width was set to be 1.2 times the mean width of the word
(in the training data), using the SVM. The hopsize between adja-
cent windows was 20% of the size of the window. When adjacent
windows classified the underlying audio as the word, we merged the
segments into a single unit detection. If any such hypothesized seg-
ment exceeded twice the average length of the word (as obtained
from the training data), we divided it into multiple segments, each of
length equal to twice the average length of the word, and each result-
ing segment was called a separate detection. Since, in reality, spoken
words may be more than twice their average length, this can result
in a pessimistic calculation of detection performance. In all cases, in
order to compute the entire ROC the distance of the instances from
the boundary was compared to a varying threshold.

5. EXPERIMENTS

5.1. Training, testing and comparators setup

We ran experiments on the TIMIT speech corpus (available from
LDC) to evaluate our technique. We extracted 462 examples of the
keywords “greasy”, “dark”, “wash”, and “oily” from this corpus. We
then divided this into two sets, one to be used for training and one for
testing. Each of these two subsets was further subdivided to positive
sets and negative sets, the former included only the target keyword,
while the latter included utterances which did not contain the target
keyword. The number of elements in the positive set were equal to
number of elements in the negative set while training of each target
keyword’s SVM model. For the SVM, we used the linear kernel.

We note that our features are rather unconventional, and are best
categorized as “alernative” spectrographic features. Other alternate
spectrographic features have recently been explored by researchers
and found effective for simple word spotting tasks. E.g., in [4], Ez-
zat explored a mechanism based on detection of patches of spectro-
temporal features for keyword spotting. Ezzat’s method also derives
non-standard word-level features from spectrograms, and has repeat-
edly demonstrated results comparable or superior to HMMs under
low-training data situations in particular.

The benefit (and reason) for choosing the particular experimen-
tal setup that we did is that it is identical to the one used by Ezzat
et. al. in their experiments. Thus, it enables us to compare our
results on a one-to-one basis with theirs, not only with the perfor-
mance they obtain with their method, but also with their baseline,
which, presumably, was optimized appropriately. Thus, in the re-
sults reported below, the comparative results reported, namely the
HMM-based baseline and the performance obtained by Ezzat et. al.
are directly drawn from their paper, enabling us to report what we
believe to be fair comparisons.

In a first experiment we evaluated the effect of the number of
seams derived from the spectrogram on classification performance.
Figure 5 shows the ROCs obtained for the word “dark” with different
numbers of seams. Here we classified segmented-out positive and
negative instances of the word. We note that increasing the number
of seams generally improves classification. In the remaining experi-
ments we used 25 seams to compute seam-hough features.

Figures 6 and 7 shows the ROC curves obtained for each of



Fig. 5. The ROCs obtained with different numbers of seams.

Fig. 6. Results on “Dark” and “Greasy”.

the four words “greasy”, “dark”, “wash” and “oily”, for classifiers
trained with different numbers of training instances. In these plots
the y axis shows the percent of target words that were correctly de-
tected, while the x axis shows the number of false detections per-
formed per unit time. Also shown are the results reported by Ezzat
et. al. in [4] for exactly equivalent experiments using their patch-
based spotter, and an HMM-MFCC based comparator.

6. OBSERVATIONS, CONCLUSIONS AND FUTURE WORK

We note that the performance obtained with seams-based features
is nearly as good as that reported by Ezzat et. al. using spectral
patches, and generally better than the performance obtained with an
HMM-MFCC classifier. What is significant is not that we do not
outperform Ezzat et. al. – indeed we believe that the HMM-based
approach suffers primarily from the fact that it is not discriminatively
optimized for word spotting. It is that although the seams only de-
tail the location of high-energy tracks in the spectrogram, and do not
represent the spectral information itself, we nevertheless get compa-
rable performance to that obtained with MFCCs or spectrographic

Fig. 7. Results on “Oily” and “Wash”.

patches which characterize spectral shape. The two features capture
different kinds of information. It is reasonable to assume that by
combining the two one can obtain better performance still.

Another observation is that the seam features could be expected
to be most useful for words containing consonants, stops and other
constituents that are likely to impart distinctive vertical seams to the
spectrogram. Words such as “oily” which are entirely sonorant do
not have distinctive vertical seams. Yet, by forcing the algorithm to
discover seams we do derive information that is sufficient to recog-
nize “oily” no worse than the other methods. We have not investi-
gated all possibilities: horizontal seams, not tried in this paper, may
have additional information, that could be valuable for classification.

We are conducting detailed investigations of the seam features
obtained from different types of sounds, i.e., vowels, voiced and
unvoiced stop consonants and fricatives, and the effect of context,
coarticulation etc. In addition, we are investigating the relationship
between spectrographic seams and various perceptual cues. We also
intend to investigate other ways of abstracting seam based represen-
tations besides the Hough transforms, as well as techniques for har-
nessing seam structure within continuous speech recognition tasks.
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