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ABSTRACT

Effective denoising of noise-corrupted speech signals remains a
challenging problem. Existing solutions typically employ some
combination of noise estimation and noise elimination, either by
subtraction or by filtering. The estimation of noise and the denois-
ing are generally treated as independent aspects of the problem. In
this paper we propose a new neural-network-based approach for de-
noising of speech signals. The approach integrates noise estimation
and denoising into a single network design, while maintaining many
of the aspects of conventional noise estimation and signal denoising
through a recurrent gated structure. The network thus operates as
a single integrated process that can be trained to jointly estimate
noise and denoise the speech signal with minimal artifacts. Noise
reduction experiments on noisy speech, both with digitally added
synthetic noise and real car noise, show that the proposed algorithm
can recover much of the degradation caused by the noise.

Index Terms— Recurrent neural networks, Speech enhance-
ment, Noise reduction

1. INTRODUCTION

The problem of enhancing speech that has been corrupted by noise
has continued to receive the attention of researchers for several
decades. The challenges are twofold: the noise that corrupts any
particular segment of speech must be accurately estimated, and this
noise must be effectively attenuated without diminishing the speech
in the signal as well.

The first problem arises from the fact the noise in the noisy
speech is itself “corrupted” by the speech and cannot be accurately
characterized. It must be estimated primarily from past samples of
the signal, particularly regions where there is no speech [1]. One
must, of course, be able to accurately detect the presence of speech
in order for this to work well, and this can be a challenging problem
by itself in many situations. It is common to utilize some form of
a running estimate of the noise, which is updated relatively quickly
in regions of no speech, and either not at all, or at a much lower
rate, in regions where speech has been found, possibly with addi-
tional, possibly non-linear smoothing to interpolate between long
and short-term trends [2].

The latter problem — that of optimal attenuation or cancellation
of the noise in the noisy speech signal arises from the fact that we
usually only have an estimate of the power or magnitude spectrum
of the noise, and must nevertheless cancel the noise from the speech
signal itself. The simplest approach to this is to simply subtract
the estimated noise power from the power in the noisy speech [3].
Alternately, one may cast this is a filtering process. The optimal
filter for such filtering is a Wiener filter, whose filter response is the
ratio of the estimated power spectrum of the clean speech and that

of the noisy speech [4]. Variations of this scheme usually differ in
the manner in which the power (or magnitude) spectra of the clean
and noisy speech are estimated. Still other methods develop these
filters as MMSE estimators based on assumed distributions for the
speech and the noise [5, 6].

The above approaches generally make few assumptions of
knowledge of the properties of the underlying speech or noise.
Other methods make more detailed assumptions about the distribu-
tions of the speech and/or the noise. For instance signal-separation
techniques such as those based on non-negative matrix factorization
[7] or PLSA [8] assume that non-negative compositional factors of
both the speech signal and the corrupting noise are known. Kalman
or particle filtering approaches assume knowledge of the dynam-
ics of the speech signal or the noise [9]. Yet other approaches as-
sume knowledge of the dynamics of both sources [10]. In all of
these cases, the statistical nature of the speech and the noise must
be learned from prior training examples.

Meanwhile, neural network based speech enhancement tech-
niques have generally taken the form of mappings that attempt to
directly convert noisy speech to clean speech. These mappings are
often modeled by simple, time-invariant networks such as feed for-
ward networks, autoencoders, and restricted Boltzmann machines
[11, 12, 13]. The time-invariant structure does not explicitly take
advantage of the time-series nature of the speech signal. Recurrent
neural networks formalisms too have been proposed as an alterna-
tive, where the network mapping the noisy speech to clean speech
includes a recurrent component that carries over state information
[14]. However, even here, the underlying processing, although re-
current, is fixed, in that the manner in which the internal states are
updated and the signal is processed remains unchanged regardless
of the nature of the incoming signal. In any stream of incoming
speech, the signal includes both non-speech segments and segments
with speech; this distinction is ignored by the processing.

In our work we also employ a recurrent network formulation,
however, we explicitly take into account the fact that the incom-
ing signal may or may not include speech. The manner in which
the signal must be processed must ideally depend on whether the
incoming signal does have speech or not — in the former case, the
noise must be filtered out of the signal; in the later, no output is de-
sired; nevertheless the incoming signal may be used to update the
internal state of the system that carries information about the noise.
We embody this principle into our network by fashioning it upon
prior formalisms such as those employed in spectral subtraction or
Wiener filtering approaches — we partition our network into three
sections, one each designed to track noise (or an internal variable
that is analogous to noise) and the speech and a third to perform
filtering. Updates to the states of these sections are turned on or off
by gates, such as those employed in the long short-term memory
(LSTM) principle [15, 16].
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One may view the network, in principle, as a variant of a spec-
tral subtraction scheme in which the recurrent estimate of noise and
speech, as well as the final filter are all performed by neural net-
works, rather than simple linear or piecewise-linear functions, and
the decision of when to perform the recurrent updates of noise and
speech spectra too are governed by a neural network.

Noise reduction experiments on noisy speech demonstrate that
the network is able to reduce noise without the spectral holes and
musical noise common to most subtraction and filtering schemes.
The denoising is observed, not surprisingly to improve on an equiv-
alent implementation of spectral subtraction, indicating that simply
modifying existing signal processing structures by compute param-
eters that are otherwise heuristically obtained through a neural net-
work can provide benefits.

The learned strategy also enables easy transition to complex
spectra. Conventional spectral subtraction and Wiener filtering op-
erate on magnitude or power spectra, and make no modification to
the phase of the signal. The learned neural networks can, however,
both incorporate complex values, and be optimized to minimize er-
ror in the complex spectrum. We show that this approach does in-
deed result in improved performance over magnitude spectra.

More importantly, unlike conventional neural-net based sound
processing schemes, which attempt to directly estimate the
“cleaned” signal, we utilize a different approach where we attempt
to learn a multiplicative filter that minmizes output error. We believe
that this paradigm is a marked novelty that is potentially promising
in many problems where multiplicative corrections are more appro-
priate than simple feed-forward processing.

The rest of this paper is organized as follows. In section 2 we
explain the design of the denoising neural networks and present its
key formulations for learning. We present our experimental setup
and results in section 3. Lastly, we present our conclusions in sec-
tion 4.

2. THE DENOISING NEURAL NETWORKS

2.1. The basic algorithm: denoising the magnitude spectrum

We base our neural network denoiser on a generalization of optimal
{2 denoising schemes that have previously proven to be effective.
In keeping with prior work on speech denoising, we will work with
magnitude spectral values. We operate on the magnitudes of the
short-time Fourier transform derived from the signal. As is well
known, the short-time Fourier transform of a signal is derived from
the discrete Fourier transform of sliding frames of audio, so in the
following discussion, all references to time actually refer to frame
index. All references to frequency refer to frequency indices of the
discrete Fourier transform of the frames.

We assume a simple recurrent formulation for the estimation
of the noise, that follows closely from the noise-estimation formu-
lation used in spectral-subtraction like techniques. We make some
simple assumptions:

e In regions of no speech, the recorded signal only contains the
noise.

e The noise maintains some spectral continuity across frames.
This leads to the following recurrent model for noise:
IN()| = g1 (t) ® IN(t = 1)| + g2(t) @ [X(2)] (M

where N(¢) is the estimate of the noise spectrum at time ¢, and X (¢)
is the spectrum of the recorded signal at time ¢. The model updates
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Figure 1: The gated denoising neural networks using the magnitude
spectrum (MRNN). Each of the blocked symbols for N, X, Y, g1
and g actually represent vectors. G1(), G2() and Gs() functions
consist of recurrent neural networks.

the estimates of the noise at any time as a linear combination of
the past estimate and the current incoming signal. The terms g1 (¢)
and g2 (t) represent gates to determine when the two components,
N(t — 1) and X(¢) must contribute to the current estimate. The
symbol ® represents Schur product, since g1, g2, N, X and Y are
vectors. Equation 1 attempts to capture the following intuition. Ide-
ally, in speech regions, X (t) cannot be trusted to contribute to the
noise estimate, since it carries a significant speech component. The
estimate must largely depend on the continuity of what is already
known, i.e. N(¢ — 1). On the other hand, in non-speech regions,
the current recorded signal must contribute significantly to the noise
estimate. The precise behavior however, depends on being able to
determine exactly when speech occurs, a challenge in itself. The
gates g1 (t) and g2(¢) are intended to achieve this objective. The
gates in turn are neural network classifiers themselves, since they
must determine from available information, which we posit as the
current input and past estimates of clean speech and noise, as well
as the past value of the gate itself, whether the current frame rep-
resents speech or not. The estimated noise is used to calculate the
denoising filter g3(t), estimating the denoised speech spectrum as
below.
Y (1)) = ga(t) ® [X(1)] @
Y (1) = Y (1) © exp(j £X(w)) (©)

Here, the gate g3(t) above represents a denoising filter, and /X (w)
is the phase spectrum of the observed signal X(t).

We incorporate the above intuitions into a recurrent neural net-
work. Figure 1 shows a simplified illustration of the denoising neu-
ral network system. The network is recurrent: each stage of the net-
work generates an output that depends both on the current input and
the past state of the network. We may draw a linear-system analogy
to an autoregressive moving-average system (although the network
is decidedly not linear): the current output of the system depends
not only on the past state, but also on past inputs. The “moving-
average” component is derived from its dependence on N(¢ — 1)
and Y (¢ — 1). The “autoregressive” component is derived from its
dependence on X (¢ — 7), 7 > 0. Figure 1 only shows an autore-
gressive recurrence over one past time instant; in practice longer
recurrences may be employed.

The entire operation is performed on magnitude spectra. The
phase in the signal is only incorporated after processing, although
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the actual error that is optimized during training is with respect to
the complex output (i.e. between the complex Y (¢) and the complex
spectrum of the corresponding clean speech). Consequently, we
will refer to this network as the “MRNN”, where “M” stands for
“magnitude”.

The actual detailed equations governing the action of the net-
work are as follows. The gates g1(t), g2(¢) and ga(t) are given
by:

g1(t) = Gi(g(t — 1);[Y( = DI INE = DI; IX(¢

), @

)

g2(t) = Ga(g2(t — 1); [Y (¢t = D IN(E =D X@)]), )

83(t) = Ga(ga(t — 1); [Y (¢t = D[ IN@)[; [X(®)]).  (6)

Here, for brevity, we have used vector notation. Thus, gi(t) and

g2(t) are actually vectors with F' components, where F' is the num-

ber of frequency bands in the STFT of the signal. G1(-) and Ga(+)

represent multi-layer perceptrons, each with F' outputs. Similarly,

N(t), X(t) and Y (t) are all F-dimensional vectors. The function

G3(+) too is a multi-layer perceptron that takes in Y (¢ — 1), N(t)

and X(t) as inputs, and has F' outputs, one per frequency compo-
nent of the desired output spectrum.

The gate networks G (-) and Gz(+) are gating functions which
must ideally identify regions of speech and non-speech, to control
the update of the noise estimate. In practice, they make “soft” de-
cisions between 0 and 1 to indicate the degree to which past noise
and the current speech must contribute to the noise estimate. Con-
sequently, the activations of the neurons in the gate networks are
chosen to be squashing functions such as the hyperbolic tan and
logistic functions.

The output network G (-) effectively performs a filtering oper-
ation, which must produce an estimated clean speech signal. Simi-
lar to G1(-) and G(-), soft decisions are employed in G3(-).

In all cases, the neurons operate on affine combinations of their
inputs. Thus, each neuron has the form h(i;, j = 1---J) =
h(>_, wji;j + b), where 4;, j = 1---J represent the inputs to
the neuron, h(-) represents the activation function of the neuron,
and w;, j = 1---.J and b represent the weights assigned to the
inputs and the bias. The input weights and biases of the various
neurons are the parameters of the network, which must be learned
from training data.

2.2. Training the network

We use error back propagation through time (BPTT) to train the
network. Since our network includes multiplicative gating compo-
nents, the update rules are somewhat anlogous to those for long
short-term memory (LSTM) networks [15, 16]. The backpropaga-
tion algorithm incorporates a feed-forward and a back-propagation
phase.

Since the network is recurrent, the initial state of the network
must be specified. In particular, |N(—1)| and |Y(—1)| must be
specified. We assume that the initial few frames of input contain
no speech and represent only the noise. Thus |N(—1)] is set to be
the average of the first several frames of input, and the initial gain
values g1(—1) and g2(—1) are set to 0.1 and 0.9. The feedfor-
ward phase subsequently proceeds through direct evaluation of the
network.

In the backpropagation process, we define the error as the sum
of the squared errors at all time instants. Let |[Y(¢)|, t =1---T
and |S(t)], ¢ = 1--- T represent the sequences of spectral vectors
of the denoised speech and clean speech components of training
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Figure 2: The gated denoising neural networks extended to complex
values (CRNN).

utterances. Here, index 7" represents the total number of frames of
the data. The error at time instant ¢ is given by

E(t) =Y (IS f1) = [Y (& ) @)

f=1

The total error that we actually minimize is the sum of the error at
all time instants:

T
E=) E(t) ®)
t=1

The backpropagation rules minimize this error with respect to the
network parameters, namely the weights and biases of the neurons.

2.3. Denoising the Complex Spectrum

In the MRNN explained in the previous section, the network op-
erates on magnitude spectral values. In order to resynthesize the
denoised speech, the phase information is carried over from the ob-
served noisy signal X ().

In our second model, we attempt to directly estimate a complex
multiplicative correction term, by operating directly on the complex
spectrum of the speech [17]. The input to the network is now the
complex spectrum of the incoming speech. All weights are com-
plex. The neurons are also complex, and operate on complex in-
puts to generate complex outputs: the conventional real function
y = f(z) specifying the activation functions is now replaced by
yr = f@r) yi = f(@2), y = yr + iys.

Figure 2 shows the complex valued denoising neural networks.
We refer to this network as a “CRNN”, where the “C” stands for
“Complex”. The individual components of the extended complex
denoising algorithm are described as below.

N(t) = g1(t) @ N(t — 1) + g2(t) ® X(1) ©

Y () = gs(t) @ X(t) (10)

g1(t) = Gi(g(t —1); Y(t —1);N(t - 1); X(¢)) (1)
g2(t) = Ga(ga(t — 1); Y(¢ - 1); N(t = 1); X(¢))  (12)
g3(t) = Ga(gs(t —1); Y(t — 1); N(¢); X(¢))  (13)

The objective we minimize to train the is the ¢2 error between the
complex output of the network and the desired complex clean spec-
trum. Since the /2 error is not analytic and is hence not differen-

tiable, we use the approximation from [18] to obtain the derivatives
for back propagation.
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Figure 3: Log spectrogram of signals. (a) observed signal with
white noise 10dB, (b) clean speech and (c) output signal by CRNN.

3. EXPERIMENTAL RESULTS

3.1. Experimental setup

For experimental evaluation, we conducted two sets of experiments.
In one, we corrupted a speech database with digitally added syn-
thetic white noise, and in the second set, we corrupted the data with
noise recorded in a car. In each case we trained the network with
clean and noisy pairs of utterances from the training set, and subse-
quently tested denoising performance by using the trained network
to clean the test set. For the experiments, we used the TIMIT [19]
dataset. This dataset is pre-partitioned into a training and a test
set. We corrupted the dataset with noises at SNRs ranging from
-5 to 15dB at intervals of 5dB SNR. Spectral vectors were com-
puted from the clean and noisy signals using a 256-point Short Time
Fourier Transform (STFT).

The key parameters of recurrent neural networks in our exper-
iments were a) Depth of network: 3 to 4 layers, b) Breadth of net-
work: 32 to 258 units, ¢) Learning rate: 0.03, d) Activation function:
logistic. Also, the dimensions of the input and output layers were
set to 516 and 129 respectively.

In the training phase, errors aggregated over all data in the train-
ing set were used to re-estimate the weights in each iteration (or
epoch) of the training. In the testing phase, input spectral vectors
from noisy signal are operated on by the trained network. Each 129-
dimensional output corresponded to the spectrum of one frame of
the estimated cleaned signal. From these, we reconstruct the clean
signal through an inverse short-time Fourier transform.

We evaluate the denoising performance in terms of signal-to-
distortion ratio (SDR) [20], which computes the ratio of the sig-
nal energy in the true (clean) signal to the energy in the distortion
between the true and reconstructed signals. For comparison, tradi-
tional spectral subtraction [3] was employed, using an empirically
determined over-subtraction factor of 2.0 and noise floor of 0.01.

3.2. Results

Table 1 shows the denoising performance using various hidden units
parameters. White gaussian noise at 5dB SNR was used in this ex-
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periment. The best results obtained are 9.51dB SDR with 129 units
in the CRNN. In all patterns of various hidden units, the CRNN is
better than the MRNN.

Hidden Layer SDR [dB]

size MRNN | CRNN

32 9.26 9.50

32-32 9.27 9.50

64 9.29 9.51

64-64 9.32 9.50

129 9.32 9.51

258 9.29 9.51

Table 1: Denoising performance for various hidden units on TIMIT
testset with white gaussian noise at 5dB SNR.

Table 2 shows the results the denoising performance for vari-
ous SNRs on the TIMIT testset. The hidden-layer sizes of MRNN
and CRNN are set to 129 units. In this result too, the proposed algo-
rithms are significantly better than conventional spectral subtraction
for both, white and car noises.

Noise | Input SNR SDR [dB]
type [dB] SS MRNN | CRNN
-5 3.98 4.03 4.04
0 5.77 6.47 6.61
White 5 7.61 9.32 9.51
10 9.32 12.48 12.71
15 10.86 16.09 16.36
-5 4.49 6.90 7.12
0 6.72 10.01 10.40
Car 5 8.61 13.39 13.75
10 10.22 16.79 17.23
15 11.59 | 20.30 20.97

Table 2: Denoising performance for various SNR on TIMIT testset.
Hidden units size of MRNN and CRNN are 129.

Figure 3 shows the spectrogram of a noisy signal corrupted
to 10dB by white noise, the reference clean speech and the out-
put signal of a CRNN. It should be noted that the high frequency
component of consonants is not destroyed by the process, never-
theless high frequency noise is reduced clearly. The noise in the
low-frequency bands has remained. We believe that this too can be
eliminated by appropriate modification of the objective minimized
to train the network.

4. CONCLUSIONS

In this paper, we have proposed the use of gated denoising recur-
rent neural networks as neural equivalents of spectral subtraction
for speech enhancement. The results of the noise reduction exper-
iments revealed that the noise reduction performance of the pro-
posed algorithm was superior to that of conventional spectral sub-
traction. We have also extended the algorithm into complex-valued
recurrent neural networks. Experimental results demonstrated that
the complex-valued network was superior to its real-valued counter-
part. While better results may be obtained through more sophisti-
cated models, we believe that the chief take-home lesson is that even
conventional signal-processing algorithms may benefit significantly
through direct translation into analogous neural-net formalisms.
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