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ABSTRACT

In this paper we present a algorithm for separating singing voices
from background music in popular songs. The algorithm is derived
by modelling the magnitude spectrogram of audio signals as the out-
come of draws from a discrete bi-variate random process that gen-
erates time-frequency pairs. The spectrogram of a song is assumed
to have been obtained through draws from the distributions under-
lying the music and the vocals, respectively. The parameters of the
underlying distribuiton are learnt from the observed spectrogram of
the song. The spectrogram of the separated vocals is then derived by
estimating the fraction of draws that were obtained from its distribu-
tion. In the paper we present the algorithm within a framework that
allows personalization of popular songs, by separating out the vo-
cals, processing them appropriately to one’s own tastes, and remix-
ing them. Our experiments reveal that we are effectively able to
separate out the vocals in a song and personalize them to our tastes.

Index Terms— Probabilistic Latent Component Decomposition,
Signal Separation

1. INTRODUCTION

We introduce a framework for personalizing music by changing its
inherent characteristics through signal processing. In this frame-
work, pre-recorded music, as exemplified by popular movie songs
and independent albums by singers in popular genres worldwide,
is first separated into its components, modified automatically and
remixed to sound personally pleasing to an individual listener.

Our motivation for this was initially to make some extremely
high-pitched female vocals produced in Indian movies sound more
pleasing by bringing down the pitch of the singer to a softer, more
natural level without affecting the overall quality of the song and
background music. Note that in making this statement we neither in-
tend to criticize Indian female singers, nor Indian listeners who find
high pitched voices pleasing to the ear. We merely bring to attention
the well-known fact that music is an acquired taste in human beings,
and what may sound pleasing to a group of people may not sound
equally pleasing to another group who may have been exposed to
different strains of music altogether. We realize that in most cases,
these songs are beautiful creations otherwise, and our attempt was
initially to merely create the technology that would present this facet
of Indian popular music to the world. In retrospect, we found that the
uses of such a framework can be numerous, as we will later explain
in this paper.

To understand how our framework functions, we need to first
understand how the majority of studio-recorded studio music is cur-
rently produced throughout the world. A good piece of popular mu-
sic, such as an Indian movie song, is usually a pleasing combina-
tion of some background music and one or more foreground singing
voices. In a typical production, multiple channels of music and the

singer are separately recorded. Individual channels are edited and/or
corrected, their relative levels are adjusted, and the signals are mixed
down to a small number of channels, typically two. The final sounds
we hear are the outcome of this process.

The development of our framework begins with addressing the
problem of reversal of this process. Given a segment of a song in-
clusive of vocals and background music, is it possible to separate
these components out to extract, say, the singer in isolation? This is
the topic we address in this paper. We do not attempt to completely
invert the process of mixing to separate the song out into all of the
component channels (although such separation is certainly not be-
yond the scope of the technique presented here); we are content to
separate the foreground singer from the background music.

The separation of foreground vocals from background musical
accompaniment is a non-trivial task that has so far not attracted much
attention in the scientific community, although several parallel top-
ics such as automatic transcription of music, separation of musical
constituents from an ensemble, and separation of mixed speech sig-
nals have all garnered significant attention in recent times. Literature
on the topic of separating vocals from background music is relatively
sparse. Li and Wang [1] attempt to perform the separation using prin-
ciples of Computational Auditory Scene Analysis (CASA). In this
approach, the pitch of the foreground voice is detected, and spectro-
temporal components that are presumed to belong to the voice are
identified from the pitch and other auditory principles and grouped
together to extract the spectrum (from which, in turn, the signal is
extracted) for the voice. Similar CASA-based techniques have also
been attempted by Wang [2]. Meron and Hirose [3] attempt to solve
the simpler problem of separating background piano sounds from a
singing voice. Sinusoidal components are learned for both the piano
and the voice from training examples and are used to perform sepa-
ration using a least-square approach. Alternately, the musical score
for the background is used as prior information to enable the sepa-
ration. Other proposals for separation of music from singing voices
have also followed similar approaches, namely those of utilizing ei-
ther explicitly stated harmonic relationships between spectral peaks,
or through prior knowledge obtained from a musical score.

The framework described in this paper, on the other hand, does
not take any of the approaches mentioned above. Instead, it is built
upon a purely statistically driven method, where the song is hypothe-
sized as the combined output of two generative models, one that gen-
erates the singing voice and the other the background music. What
distinguishes our approach from other statistical methods for signal
separation (e.g. [4], [5]) is the nature of the statistical model used.
We model individual frequencies as the outcomes of draws from a
discrete random process, and magnitude spectra of the signal as the
outcome of several draws from this process. The model is perfectly
additive in which the spectrogram of a mixed signal is simply mod-
eled as the cumulative histogram of the outcome of draws from the
processes underlying each of its constituent signals. The problem of



separating the music from the vocals then reduces to the problem of
deducing which fraction of each spectro-temporal component of the
mixed signal can be attributed to each of the two, given generative
models for both the music and the voice. Although the parameters
of the models for the two themselves must be learnt, the nature of
the algorithm is such that they can be learned on the fly from the
song itself. We note that we do not attempt to automatically identify
the regions of the recording that contain voice. Rather, we assume
that the boundaries of these regions are either given, or are generated
manually. The goal here is primarily to separate out the vocals from
the song and the problem of automatically detecting exactly where
the vocals lie is not (and need not be) addressed.

For the purposes of this paper we definepersonalizationas “the
ability to process the voice (or the music) in a manner that appeals to
a user and produces a personalized version of the song for the user”.
In addition to personalization, separating vocals from background
music can have other important uses, such as supporting automatic
transcription of the background music, supporting automatic identi-
fication of the lyrics, acoustic event (or musical phrase) identification
for indexing purposes etc.

The rest of this paper is arranged as follows: In Section II, we
describe the basic representation of the signal used by our frame-
work. In Section III we describe our statistical model to represent
signal spectra. In Section IV we describe a supervised signal sep-
aration algorithm that forms the basis of the our algorithm for sep-
arating vocals from music, which in turn is presented in Section V.
In Section VI we discussion the framework for personalization of
songs. In Section VII we describe experiments evaluating the al-
gorithm and the signals produced by it. We show that not only are
we able to separate songs effectively, but are also able to modify the
separated sounds to personalize a song. Finally in Section VIII we
present our conclusions.

2. REPRESENTING THE SIGNAL

The first step in any audio processing algorithm is that of coming
up with an adequate representation for the audio signal. We con-
vert the input audio signal to a spectrogram prior to further process-
ing. The spectrogram is obtained through the application of a short-
time Fourier transform to the signal: the signal is segmented into
“frames” that are 64ms long. Adjacent frames overlap by 48ms. A
Hanning window is applied to each frame and a DFT is computed
from it. The sequence of spectral vectors thus obtained constitutes
the spectrogram for the signal. Each component of the DFT of each
frame represents the contribution of a specific frequency to the signal
within a specific window of time. We will refer to these components
as atime-frequencycomponent. The spectrogram may also be in-
verted to retrieve the time-domain signal through the application of
the inverse DFT to each spectral vector, using the standard overlap-
add method to combine the segments of the signal obtained from
individual DFTs.

Each element of the spectrogram is a complex number, compris-
ing a magnitude and a phase. The information in the signal, how-
ever, is largely encoded by the magnitude of the spectrogram. It is
well known that it is possible to reconstruct perfectly intelligible sig-
nals from a spectrogram even when the phases of the time-frequency
components have been completely altered. Figure 1 shows the pic-
torial representation of the spectrogram of a singing voice. TheX
axis in the figure represents time (or, more accurately, the index of
the spectral vectors in the spectrogram) and theY axis represents
frequency. The color of each point in the figure represents the mag-
nitude of the specific time-frequency component. Several clear spec-
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Fig. 1. Spectrogram of a female singing voice.

tral patterns are evident in the figure. These patterns are characteris-
tic of the underlying sounds. They are typically different for different
speakers or singers, for different musical instruments (or musical en-
sembles) etc. and can be treated as signatures of the singer, speaker
or other processes creating each strain of an underlying sound.

In our framework, we use the magnitude spectrogram to repre-
sent speech. The statistical models discussed below are then used
to model the magnitude spectrograms. The models are used in the
separation method presented in Section 4 that also separates out the
magnitude spectrogram of the “component” signals. In order to ob-
tain a separated time-domain signal, the phase of the spectrogram of
the original (mixed) song is imposed on separated magnitude spec-
tra, and the resulting complex spectrogram is inverted through an
inverse short-time Fourier transform.

3. STATISTICAL MODEL FOR SIGNAL SPECTRA

The magnitude spectrogram for a signal is a two-dimensional data
structure, comprising a sequence of magnitude spectral vectors, and
can be represented as a matrix. LetS(t, f) represent thef th fre-
quency component of thetth vector in the sequence.

We model the matrix as the histogram of outcomes of draws
from a discrete bivariate distributionP (t, f), per the model described
in Smaragids and Raj [6]. According to the model, each draw from
the distribution will produce a singlequantumof the time-frequency
pair (t, f). The quantum referred to need not necessarily represent
a singleinstanceof (t, f); rather a draw of a large numberQ of
quanta of(t, f) will result in a single instance of(t, q). Drawing of
less thanQ quanta will result in a non-integral count of observations
of (t, f). For the purpose of the analysis presented in this paper the
valueQ need not be known.

Thus, the model assumes that there is a bi-variate distribution
underlyingthe spectrum and that the spectrum itself is the outcome
of draws from it. We note that it is not uncommon to model signal
spectra as the outcome of draws from a random process. However,
what distinguishes the proposed model is the description of the pri-
mary random variable. Conventional models assume that the the
result of a draw from an underlying distribution is thevalueof the
spectrum at a given(t, f). In our model, the time-frequency pair
(t, f) itself is the random variable, and the value of the spectrum
at (t, f) equals the number of times that time-frequency pair was
drawn from the underlying distribution.

The distributionP (t, f) represents thejoint distribution of the
time random variablet and the frequency random variablef . We
decouple the time and frequency variables through a latent variable
model as follows:

P (x) =
X

z

P (z)P (t|z)P (f |z) (1)

wherez represents alatent or unseen variablez. z is a discrete
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Fig. 2. Graphical representation of the generating process for a sig-
nal. A latent variablez selects both a marginal time distribution
(P (t|z)) and a frequency marginal distribution (P (f |z)). The time
and frequency variables are drawn from these distributions.

RV that can take only a small set of values. Associated with each
z are P (f |z), the marginal distribution of the frequency variable
f , andP (t|z), the marginal distribution of the time variable. The
overall generating model for this process is as follows: to generate a
(t, f) pair the process first draws a latent variablez, then drawst and
f independently from from the latent-variable-conditioned marginal
distributionsP (t|z) andP (f |z). The overall generating model is
represented graphically by Figure 2.

The model represented by Equation 1 can also be represented
algebraically by the following matrix expression:

PX = FZT (2)

wherePX is anNf ×Nt matrix whose elements areP (t, f), where
Nf andNt represent the total number of frequency and time indices
respectively,F is anNf ×Nz matrix whose entries are the probabil-
ity valuesP (f |z), whereNz represents the total number of possible
values for the latent variablez, Z is anNz × Nz diagonal matrix
whose columns areP (z), andT is anNz × Nt matrix whose en-
tries areP (t|z). Since they represent probability terms, the columns
of F, the diagonal terms ofZ and the rows ofT must all sum to1.0.
Equation 2 represents the columns ofP as linear combinations of
the columns ofF. If the columns ofF are viewed as spectral basis
vectors,ZT represents the projection of the columns ofP onto the
space spanned by the basis vectors inF. If we represent the mag-
nitude spectrogram for the signal generated fromP by S, ZT also
represents a normalized projection of the spectral vectors onto the
basis vectors inF. Eachjth row of T gives the relative contribu-
tion of the corresponding basis vector (column ofF) as a function of
time.

As is clear from Equation 2, the same set ofP (f |z) terms are
used to compose every column ofPX , and thereby every spectral
vector inS. Thus, theP (f |z) terms may be considered thebuilding
blocksthat compose the the given sound.

TheP (f |z) terms can be learned along with theP (z) andP (t|z)
terms from the spectrogramS using an Expectation Maximization
algorithm, which gives us the following iterative update rules:

Fig. 3. Center panel: the spectrogram of a signal that consists of two
tones turning on and off. Left panel: The two marginal frequency
distributions obtained from it. One identifies the frequency of the
first tone, the other the second tone. In this panel the Y axis repre-
sents frequency and the X axis represent the index of latent variable.
Top panel: The marginal time distributions obtained. Each of the
two distributions identifies the times at which one of the two tones
occurs. Here the X axis represent time and the Y axis represent latent
variable index.

P (z|f, t) =
P (z)P (t|z)P (f |z)P

z′ P (z′)P (t|z′)P (f |z′) (3)

P (z) =

P
t

P
f P (z|t, f)S(t, f)P

z′
P

t

P
f P (z′|t, f)S(t, f)

(4)

P (t|z) =

P
f P (z|t, f)S(t, f)P

t′
P

f P (z|t′, f)S(t′, f)
(5)

P (f |z) =

P
t P (z|t, f)S(t, f)P

f ′
P

t P (z|t, f ′)S(t, f ′)
(6)

The left panel in Figure 3 shows the basis vectors derived using
the above algorithm for a simple example where the signal consists
simply of a mixture of two tones turning on and off. In this example
we have assumed that the latent variablez can only take two val-
ues. We note that the two corresponding marginal frequency distrib-
utions clearly capture the two building blocks for the signal, i.e. the
two tones that compose the spectrogram. The correspondingP (t|z)
sequences also accurately represent the time instants at which these
tones occur.

4. SEPARATING COMPONENT SIGNALS FROM A
MIXTURE

The statistical model presented in Section 3 can be used to separate
out component signals from a signal, such as the speakers from a
mixed recording [7]. The set of basis vectors described by the fre-
quency marginalsP (f |z) are learned for each component signal in
the mixture from a separate unmixed training recording. LetPi(t, f)
represent the distribution underlying the spectrogram of theith com-
ponent signal, and letPi(f |z) represent the frequency marginals
learned for theith component signal in the mixture. By the model,
the spectrogram of the mixed signal is obtained through draws from
the distributions of all component signals, since the spectrum of the
mixed signal is obtained by addition of the spectra of the compo-
nent signals. The overall distribution underlying the mixed signal,
Pmixed(t, f), is hence given as a linear combination of the distribu-
tions for the individual constituents:



Pmixed(t, f) = P (S1)P1(t, f) + P (S2)P2(t, f) . . . (7)

whereP (Si) is the proportion of draws in the final spectrum that
was drawn from the distribution of theith speaker. Using the de-
composition of Equation 1, this can be written as

Pmixed(t, f) = P (S1)
X

z

P1(z)P1(f |z)P1(t|z)

+ P (S2)
X

z

P2(z)P2(f |z)P2(t|z) . . .(8)

wherePi(z) represents the probability distribution of the latent vari-
ablez for theith component signal,Pi(t|z) represents the time mar-
ginal for the distribution of the component signal when the latent
variable takes the valuez, and Pi(f |z) is the corresponding fre-
quency marginal. Equation 8 is equivalent to stating that the the
distribution underlying the spectrum of the mixed signal is formed
by a linear combination of the marginal frequency distributions for
the component signals.

Given a new mixed signal and the marginal frequency distrib-
utions for all its component signals (i.e. assuming that allPi(f |z)
terms are known, having been learned from some training corpus
for componentSi), the parameters ofPmixed(t, f) that remain un-
known are the termsP (Si), Pi(z) andPi(t|z). Alternately stated,
the distribution underlying the mixed signal is a linear combination
of the known marginal frequency distributions for all component sig-
nals; however the proportions to which they must be mixed to obtain
the final distribution are unknown. The unknown terms are easily
determined using an EM algorithm that involves iterative updates of
the following equations:

P (Si|f, t) =
P (Si)

P
z Pi(z)Pi(f |z)Pi(t|z)

P (Sj)
P

z Pj(z)Pj(f |z)Pj(t|z)

P (z|Si, f, t) =
Pi(z)Pi(f |z)Pi(t|z)P

z′ Pi(z′)Pi(f |z′)Pi(t|z′)

P (Si) =

P
t

P
f P (Si|t, f)S(t, f)P

j

P
t

P
f P (Sj |t, f)S(t, f)

Pi(z) =

P
t

P
f P (z|Si, t, f)S(t, f)P

j

P
t

P
f P (z|Sj , t, f)S(t, f)

(9)

Pi(t|z) =

P
f P (z|Si, t, f)S(t, f)P

t′
P

f P (z|Si, t′, f)S(t′, f)
(10)

We are now set to separate out the component signals from a
mixture. Given the frequency marginalsPi(f |z) for all component
signals and the magnitude spectrum for the mixed signal, all un-
known terms in Equation 8 are obtained through iterations of Equa-
tion 10. Once derived, the partial distribution that represents the con-
tribution of theith component to the spectrum of the mixed signal is
given by

P
z Pi(z)Pi(f |z)Pi(t|z). Figure 4 shows a graphical rep-

resentation of the statistical framework used for separation and the
components of this framework that must be estimated.

We recall that the value of the spectrumS(t, f) of the mixed sig-
nal at any time-frequency location(t, f) is the outcome of several
draws from the distribution of the mixed signal. The correspond-
ing spectral component of theith component signal is obtained by
estimating the number of these draws that were obtained from the
partial distribution for that component. Thus, the overall separated

z

t f

S

Fig. 4. Graphical representation of the generating process for a
mixed signal. A first latent variableS selects the speaker; a sec-
ond level latent variable signalz selects the marginal time and fre-
quency distributions (that are specific to the speaker and latent vari-
able). Only the marginal distributions for the frequency variablef
(shown shaded) are known; all other parameters must be estimated.

spectrum for theith component is obtained by estimating individual
components of this spectrum through the expressions

Ŝi(t, f) = S(t, f)
P (Si)

P
z Pi(z)Pi(f |z)Pi(t|z)P

j P (Sj)
P

z Pj(z)Pj(f |z)Pj(t|z)
(11)

The above equation only reconstructs the magnitude spectrum
for the ith component. To reconstruct the time domain signal, the
phase of the original mixed signal is imposed on the spectrogram
and the resulting complex spectrogram is inverted through an inverse
short-time Fourier transform.

5. SEPARATING A SINGING VOICE FROM
BACKGROUND MUSIC

Vocals can be separated from background music using a variant of
the procedure described in Section 4. One drawback with the proce-
dure from Section 4 is that the frequency marginals must be learnt
separately from unmixed training data for each component source.
Such training data are often not available for a song, since the back-
ground music for most songs is unique. Instead, we use anadaptive
version of the algorithm for separating the vocals.

Most songs contain music-only sections sans voices. To effec-
tively separate out the singing from the music, it is important to iden-
tify the regions of the song where the voice(s) are actually active and
to selectively apply the separation algorithm to only these regions.
In this paper we assume that these regions are markeda priori, ei-
ther by some automated technique or by hand. We do not explicitly
address the problem of marking these regions automatically.

In a first step we learn frequency marginalsPmusic(f |z) for
the music from a typical segment of music-only recording using
Equations 6. Although the equations also give us time marginals
Pmusic(t|z) and the latent variable probabilitiesPmusic(t|z), we
do not utilize those since they are specific to the training segments.
It is only the frequency marginals that are expected to generalize and
effectively model the music in the segments that have both voice and
music.

Since it is rare that songs will contain pure voice-only regions
with no background music (and even when they do, such segments
are rarely of sufficient length to learn the marginal frequency distrib-
utions for the voice from), it is assumed that the marginal frequency
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Fig. 5. First panel: Graphical representation of the generating
process for a song, used to separate background music from singing
voices. Second panel: sub graph when the first-level latent vari-
able selected represents the music. The marginal distributions for
the frequency variablef are known (shown shaded). Third panel:
sub graph when the first-level latent variable selected is the voice.
None of the parameters are known. All unknown (unshaded) para-
meters must be estimated.

distributions for the voice in the song arenot known a priori and
must be learnt.

The probability distribution underlying the voice+music segments
of the song is given by

Psong(t, f) = P (music)
P

z Pmusic(z)Pmusic(f |z)Pmusic(t|z)

+P (voice)
P

z Pvoice(z)Pvoice(f |z)Pvoice(t|z)(12)

In the above equation,P (music) (the fraction of all spectral
magnitudes that are attributable to music),P (voice), Pmusic(z),
Pmusic(t|z), Pvoice(t|z), Pvoice(f |z) andPvoice(z) are all unknown;
only Pmusic(f |z), the marginal frequency distributions for the mu-
sic are known. We estimate all unknown components using Equa-
tion 10. Figure 5 shows a graphical representation of the statistical
framework used for separation in this case and the components of
this framework that must be estimated.

Once all components of the distribution are known, the spectro-
grams for the voice-only and music-only components of the mixed
recordings are obtained using Equation 11. Time-domain signals are
finally obtained by imposing the phase of the mixed song on the sep-
arated magnitude spectrograms and inverting the resultant complex
spectrograms through an inverse short-time Fourier transform.

6. PERSONALIZATION OF SONGS

As mentioned earlier, music is a very acquired taste. The sound of
altos, tenors and sopranos singing classical western Operas at un-
natural pitches, while producing an extra formant as learned from
many years of training, may sound extremely pleasing to a classi-
cally minded person from the western world, and yet sound grating
to an untrained ear from a different part of the world.

A similar phenomenon may also be observed in popular Indian
music. Ever since the advent of the immensely talented singer Lata
Mangeshkar on the music scene in India in the 1950s, it has been
fashionable for female playback singers in Indian movies to sing at
an unnaturally high pitch. In particular, the authors have observed
that the pitch of female playback singers in Indian movies has shown
an increasing trend over the decades. Shamshad Begum maintains a
pitch of around 200Hz in the song “Mere Piya Gaye Rangoon” sung
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Fig. 6. Pitch track for a segment of the song “dayya dayya”.

in 1949. In 1956, Geeta Dutt also maintains a pitch just above 200Hz
in the song “Jaata kahan hai deewane”. The upward trend in female
pitch begins with the arrival of Lata Mangeshkar who hit a pitch of
about 380Hz in the song “Tumko piya dil diya” sung in 1963. The
song “Dayya dayya” sung in 2003 hits a peak pitch of over 760Hz in
parts. Figure 6 shows the pitch track for a segment of the vocals in
“dayya dayya” demonstrating the high pitch employed by the singer.

These high pitches are not always pleasant to everyone, although
the underlying song itself may be very melodious. We note that
the average pitch range of a human adult female voice is between
150 and 250Hz, throughout the world. When songs are rendered in
pitches outside this range, they sound good until the deviation from
the average pitch becomes extreme. While these pitches are clearly
appreciated by a majority of Indian listeners, to the unaccustomed
ear they sound screechy. The high pitch of Indian female playback
singers (in pop music) has, in fact, been commented upon, both in
informal blogs and in popular literature. For instance, on Page 24
ofher Book “Holy Cow”, published by Bantam in 2002, Sarah Mc-
Donald cites an encounter with the voice of a female playback singer
thus: “..and the driver and his friend sing along to a tape featuring
the high-pitched wail of a woman obviously being tortured.” Simi-
lar statements abound in blogged travelogues of visitors to India as
well.

As a remedy, we have created a framework where, given a song,
a person can (for the effort of manually tagging the locations of voice
regions of the song) create modifiedpersonalizedversions of the
song that are better suited to their listening tastes. Given a track of
voice-only recording, the vocals and the music are separated using
the procedure from Section 5. It then becomes possible to mod-
ify the pitch or the perceived gender of the voice through pitch and
frequency modification algorithms such as PSOLA [8]. Harmonics
may be introduced by blending multiple modified versions of the
voice and remixing them with the music. Similarly, it now becomes
possible to add in new music to the ensemble, or to modify the exist-
ing music in the song through signal processing techniques without
affecting the quality of the voice.

7. EXPERIMENTAL EVALUATION

In this section we report experiments evaluating the separation algo-
rithm proposed in Section 5, as well as the personalization frame-
work described in Section 6. In the first experiment, we demonstrate
that the algorithm is able to separate the voices from the background
from a monoaural recording of a popular hindi song.

In a second experiment we show that the separated signals pro-
duced by our algorithm can be personalized through pitch modifica-
tion without recognizable artifacts (except those attributable to the
pitch modification algorithm itself).
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7.1. Separating Vocals from Music

For this experiment we selected the song ”Dayya dayya” from the
2003 Hindi movie ”Dil ka Rishta”, sung by Alka Yagnik, to largely
percussive background music. The song was ripped from a legally
obtained CD from a retail shop and was sampled at 44100 Hz. The
entire signal was converted to a spectrogram as described in Section
II.

We hand-segmented the song to mark the boundaries of the re-
gions that included voice. The music-only segments of the recording
were used to compute the distribution underlying the music spectra.
The distribution was modelled through a mixture of 100 products
of marginals (i.e. z could take 100 values), resulting in 100 sets of
marginal frequency distributionsP (f |z) characterizing the music.
Alternately viewed, a set of 100 basis vectors were learnt to repre-
sent the music. Figure 7 shows some of the basis vectors learnt for
the music.

The algorithm described in Section 5 was then used to separate
out the singing voice from voice regions of the song. A set of 100
basis vectors were learnt for the voice from the song itself, in addi-
tion to the 100 vectors learnt separately for the music. These were
then used to separate the music and the voice.

Figure 8a shows the spectrogram of the mixed song and music.
Figures 8b and 8c show the spectrograms of the separated music
and voice. We note that while the separated music shows minimal
residue from the voice, the spectrogram of the voice primarily shows
the harmonic voice activity of singing with minimal residue from the
music.

The (voice portions of) the original song, and the separated mu-
sic and voice can be heard at:
http://www.cs.cmu.edu/ bhiksha/audio/songseparation

7.2. Personalization by Pitch Modification

By separating the vocals out from the music, we are able to reduce
the pitch of the vocals to more acceptable levels, remix the mu-
sic and the song to produce pleasanter sound. In particular, in or-
der to demonstrate the effectiveness of our separation algorithm we
used time-domain PSOLA [8] for pitch modification. Time-domain
PSOLA requires two operations that are critically dependent on the
fidelity and cleanliness of the time-domain waveform: pitch detec-
tion and pitch-period compression. A filter-bank based pitch de-
tection algorithm was used to detect pitch [9]. For this experiment
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Fig. 8. Top panel (a): Spectrogram for the mixed voice and music in
a segment of the song “dayya dayya”. Middle panel (b): Separated
spectrogram obtained for the music in the same segment of the song.
Bottom panel (c): Separated spectrogram obtained for the voice in
the same segment of the song.
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Fig. 9. Upper panel (a): Spectrogram of a segment of the song
“dayya dayya” including both voice and music. Middle panel (b):
Spectrogram of the same segment when the pitch of the voice has
been lowered by 4 semitones. The harmonic frequencies are ob-
served to occur much closer together. The vertical artifacts in the
lower panel are a result of deficiencies in the overlap-add mecha-
nism used in our version of time-domain PSOLA.

we reduced the pitch of the voice uniformly by four semi-tones, or
roughly by 20%, and remixed the song with the music. Ideally, one
would reduce the pitch of the music by 4 semi-tones as well; how-
ever since pitch modification of complex music is significantly more
difficult than that for voice, this was not attempted. The result is
therefore slightly different than what might have been intended (mu-
sically speaking) by the musical directors of the song.

Figure 9a shows the spectrogram of the original signal includ-
ing both music and voice. Figure 9b shows the spectrogram of the
processed signal that we eventually obtained. The original and pitch-
reduced (and remixed) signals can be heard at:
http://www.cs.cmu.edu/ bhiksha/audio/songseparation

It is clear from the example that our processing is successfully
able to produce a pitch modified version of the song, without signif-
icant artifacts. It is the opinion of the authors that the pitch modified
version of the song is also more pleasant to hear than the original
song itself.



8. CONCLUSIONS

We have presented an algorithm for separating forground vocals from
background music in songs. The proposed algorithm is observed to
be very effective at separating the two. Although the current algo-
rithm requires hand-marking of the boundaries of voiced segments
in the songs, we do not expect this to be a problem – methods such
as those proposed by Li and Wang [1] can be utilized to detect voice
boundaries automatically.

The proposed algorithm has been presented within a framework
of personalization of songs. We believe that such personalization is
not only eminently possible, it is also a very attractive commercial
proposition. We envision a system that will allow a user to mod-
ify vocals by changing the pitch, gender, adding choruses, harmo-
nization etc., modifying the music by changing its timbre etc., and
remixing the vocals and the music to produce versions of songs that
are to their liking. While most of the algorithms required for such
personalization exist, some technical challenges still remain. These
and other related topics will be the focus of future research.
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