
ABSTRACT

Compared to fully-continuous HMMs, semi-continuous HMMs
are more compact in size, require less data to train well and result
in comparable recognition performance with much faster decod-
ing speeds. Nevertheless, the use of semi-continuous HMMs in
large vocabulary speech recognition systems has declined con-
siderably in recent years. A significant factor that has contributed
this is that systems that use semi-continuous HMMs cannot be
easily adapted to new acoustic (environmental or speaker) condi-
tions. While maximum likelihood (ML) adaptation techniques
have been very successful for continuous density HMMs, these
have not worked to a usable degree for semi-continuous HMMs.
This paper presents a new framework for supervised and unsu-
pervised ML adaptation of semi-continuous HMMs, built upon
the paradigm of probabilistic latent semantic analysis. Experi-
ments with a specific implementation developed under this
framework demonstrate its effectiveness.

1. INTRODUCTION

In most HMM-based speech recognition systems, the parameters
of the HMMs are usually trained from large corpora of training
data, recorded from many speakers under diverse recording con-
ditions. As a result, the HMMs represent the average characteris-
tics of the sound across all conditions, but do not model any
specific speaker or recording condition perfectly. While general-
izability across wide range of acoustic conditions is a desirable
characteristic for any practical system, it is well known that the
recognition performance of systems that use these HMMs can be
greatly improved by updating, or adapting, the values of the
HMM parameters continually to represent the current speaker
and recording conditions. Since condition-specific or speaker-
specific data are often sparsely available, this is also the more
pragmatic approach. 

1.1 The problem of adaptation in semi-continuous 
HMM based systems
In both fully-continuous and semi-continuous HMMs, the state
output densities are typically Gaussian mixtures. The difference
between the two is that in semi-continuous HMMs, the compo-
nents of all Gaussian mixture densities are common - different
states merely assign different mixture weights to them [1]. In
both types of HMMs, the process of adaptation is not simple.
There is usually insufficient data from the current speaker or
recording condition to update all HMM parameters, and direct
parameter re-estimation using only the available data is usually
counterproductive. Instead, conventional HMM-based systems

use one of two approaches - maximum a posteriori (MAP) adap-
tation and model-based maximum likelihood (ML) adaptation. In
MAP adaptation, the a priori distribution of the optimal HMM
parameters for various speaker and noise conditions is learned
beforehand during training (this is not to be confused with the
distribution of the data itself). When adapting the system to a
given speaker, the parameters are updated to jointly maximize
the likelihood of the data from the speaker and the likelihood of
the parameters on the a priori distribution of parameters. The use
of the a priori distribution ensures that the updated model param-
eters will continue to generalize to new speech from the current
speaker or recording condition. In model-based adaptation, on
the other hand, no a priori parameter distributions are assumed,
and a simple model of how the generic HMM parameters must
be transformed to best represent the new data is hypothesized.
The model is chosen to have a small number of model parame-
ters that are common to the entire set of HMM parameters. Since
the number of model parameters is small, they can be learned
from small amounts of adaptation data, and then used to trans-
form the HMM parameters to represent new speech. In practical
systems that use fully-continuous systems, MAP adaptation has
been found to be unreliable for unsupervised adaptation. Only
model-based ML adaptation has been shown to be effective.

Both supervised and unsupervised ML adaptation of HMM
parameters has hitherto been largely unsuccessful for semi-con-
tinuous HMMs. In semi-continuous HMMs the bulk of the mod-
eling is done by the mixture weights of Gaussians. The vectors of
mixture weights for the various tied states in the HMM do not
populate the space of these vectors densely. Rather they lie scat-
tered on the surface of the probability simplex. They cannot be
clustered by conventional mechanisms. Further, it is difficult to
define generalizable transforms with a small number of parame-
ters that will apply to clusters of mixture weight vectors such that
the transformed vectors remain on the simplex, while simulta-
neously fitting to the adaptation data in a generalizable manner.
Hence, in the case of semi-continuous HMMS, while MAP adap-
tation techniques have been proposed [2], model-based maxi-
mum likelihood techniques have not been effectively developed.

In the rest of this paper we describe our new approach to adapta-
tion of semi-continuous HMMs by non-negative matrix factor-
ization of mixture weights in a PLSA (Probabilistic Latent
Semantic Analysis) framework. 

2. MIXTURE WEIGHTS AS SCALED JOINT PROB-
ABILITIES OF TIED STATES AND GAUSSIANS

In state-of-art HMM-based speech recognition systems, a small
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number of densities (typically a few thousand) are shared by the
HMM states for all the sound units modeled by the system.
HMMs states that share a common density are referred to as tied
states or senones. In semi-continuous HMMs, all HMM state den-
sities share a mixture of Gaussians from a codebook of Gaussians.
The only distinction between the various densities lies in the mix-
ture weights that are assigned to the Gaussians. Senones in semi-
continuous HMMs further share the mixture weights.

Let  be the number of Gaussians in any state output density. Let
 represent the  Gaussian, with mean  and vari-

ance . The state output density for any senone  has the form:

(1)

where  is the mixture weight that must be applied to the 
Gaussian in constructing the density for .  represents

, the a priori probability of the  Gaussian, given the
senone . From Bayes’ rule,  can be expressed in terms of

, the joint probability of senone  and the  Gaussian,
as

(2)

where  is a scaling constant. Let  be the total number of
senones. The joint probabilities of senones and Gaussians can be
arranged in a  matrix,  as

(3)

While the joint probabilities of senones and Gaussians are gener-
ally not easy to compute, they can be estimated from a training
corpus. The EM algorithm for learning HMM parameters esti-
mates expected joint counts for senones and Gaussians,

, where  is the size of the training cor-
pus. In fact, in most speech recognition systems, including the
CMU Sphinx that we have used for our experiments, it is the

 terms that are stored in the recognizer. Mixture weights
are computed from them as

(4)

The matrix  can be constructed by arranging the  terms
into the appropriate  matrix and normalizing it such that all
terms sum to 1.0.

3. LATENT VARIABLE DECOMPOSITION

Adaptation of the HMMs requires updating of all  entries
in . Typically the available adaptation are not sufficient to
adapt all of the terms in . Also, data available for some states
may be much lesser than for others. We would like to adapt a

small number of parameters using the adaptation data, in such a
manner that all  terms are modified to better represent the
test data. To do this, we decompose  into the following product
form:

(5)
where  is an  matrix,  is an  diagonal matrix and

 is a  matrix. Adaptation could be achieved by modifying
either the  diagonal entries of  or the  entries of ,
both which are far fewer than the full  entries of .  is
the order of the decomposition. If it is lesser than , the decom-
position is lossy, otherwise it can be exact.

Decompositions of the form shown in Equation (5) can be
obtained from singular value decomposition (SVD) of . How-
ever SVD does not consider the fact that all entries of  are posi-
tive, and adaptation based on SVD decompositions can result in
negative estimates for probabilities - an obvious anomaly. Instead,
we use non-negative factorizations of the  matrix. This ensures
that all elements of the ,  and  matrices are positive,
thereby guaranteeing that their product is positive. Non-negative
factorizations can be obtained using the NMF algorithm proposed
by Tsung et. al. [3], or the PLSA algorithm proposed by Hoffman
[4]. Of the two, the PLSA algorithm is more suited to our purpose
since the decomposition inherently assumes that the  matrix is a
probability matrix.

Under the PLSA model, the joint probability of Gaussians and
senones can be expressed as:

(6)

where  is the latent variable that governs both the a priori prob-
abilities of the Gaussians and the a priori probabilities of the
senones.  is permitted to take one of  values, . Given
the entire set of  values, all ,  and

 terms are obtained using an expectation maximization
algorithm [4]. Once these terms are obtained, they can be
arranged in matrices in the form given in Equation (5), where

 is the  diagonal element of ,  is the
 element of  and  is the  element of .

Figure 1 illustrates the PLSA decomposition graphically. Fig. 1(a)
shows the relationship between Gaussians and senones as given
by . The nodes on the left, labeled X, represent the various
Gaussians, and those on the right, labeled Y, show the senones.
Every edge represents the joint probability of a senone and a
Gaussian. Note that this is not the conventional dependency graph
illustration of Graphical models, since every probability entry has
its own edge in the figure. Fig. 1(b) shows the PLSA decomposi-
tion of the distribution represented by Fig. 1(a). PLSA decompo-
sition introduces a latent variable, which can take only  values.
These are shown by the central “latent” layer of nodes in the
graph, labeled Z. In Fig. 1(b), edges represent the conditional
probability of senones or Gaussians, given the latent variable. The
nodes for the latent variable themselves carry the a priori proba-
bility of the latent variable. The joint probability of any Gaussian
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and any senone is the sum of all the probabilities associated with
all paths from the Gaussian to the senone. Fig. 1(c) illustrates this
with an example of a single Gaussian-senone pair. The sum of the
probabilities of all the darkened paths represents the joint proba-
bility of the Gaussian  and the senone . The total number of
edges in the graph represent the total number of free parameters in
it. By appropriate selection of , the total number of edges in
Fig. 1(b) can be made significantly lesser than that in Fig. 1(a).

3.1 Maximum likelihood adaptation of mixture weights
The goal of adaptation is to modify every entry in the  matrix,
based on some adaptation data, to best represent the expected con-
ditions of the adaptation data. Direct adaptation would require
updating all  terms in . The amount of adaptation data
available is often insufficient to update all  terms. On the
other hand the ,  and  matrices obtained from PLSA
decomposition of  have only ,  and  non-zero
terms respectively. Adaptation of all the entries in any one or
more of these matrices results in adaptation of all  entries
of . The advantages of the decomposition become more appar-
ent from Figure 1(c). In order to update all entries in , it is suffi-
cient to update any subset of probabilities such that their
corresponding edges (or nodes, in the case of the latent variable)
lie on at least one of the paths from every Gaussian node to every
senone node. Thus, for example, in order to update , it
would be sufficient to update the probabilities of any of the edges
on any of the paths that connect the Gaussian  and the senone

. Latent variable decomposition can thus be viewed as a frame-
work that provides a facility for adapting entire joint distributions
by adapting only a small number of probability terms.

The actual set of parameters can be selected based on the amount
of adaptation data available (if sufficient data are available, it is
best to adapt the entire  matrix). In our work we have explored
the adaptation of , , , and product terms such as . The
sizes of these matrices can be modified by modifying . Larger
values of  represent more accurate decompositions of ; how-
ever, the corresponding ,  and  matrices are also larger and
require more data to adapt effectively. On the other hand, while
smaller values of  result in coarser decompositions of . adap-
tation of the component matrices requires lesser data. While the
decomposition based adaptation can also be performed using

MAP estimation, here we choose to use ML estimation.

ML adaptation of the matrices would ideally be incorporated into
the Baum-Welch reestimation algorithm. However, the corre-
sponding update equations are complicated and difficult to imple-
ment. Instead, we use a simpler approach. From the adaptation
data we compute the expected counts  for every Gaussian-
senone pair using the Baum-Welch algorithm. The normalized
expected counts are arranged in a  matrix . In order to
adapt any component matrix, for instance the matrix , we esti-
mate the updated  as

(7)

where  and  are the matrices obtained by the decomposition
of the original , and  is the Kullback-Leibler distance
between the distributions  and . The estimation of  using
Equation (7) can be shown to be identical to the maximum likeli-
hood estimation of  given the adaptation data, and can be per-
formed using a reduced version of the EM algorithm that is used
for PLSA decomposition. Once  is estimated, the adapted joint
probabilities of Gaussians and senones is computed as

(8)

Adapted mixture weights are obtained by normalizing the col-
umns of  to sum to 1.0.

Adaptation of other matrices, such as , or , or various product
terms can be performed in a very similar manner.

3.2 Extension to multi-stream semi-continuous HMMs
The above exposition is based on the assumption that the state
output distribution of any tied state is given by a single mixture of
Gaussians. In several existing systems that use semi-continuous
HMMs (e.g, Sphinx-2), state output distributions are defined on N
(N>1) feature streams (4 in sphinx-2) and the likelihood values
are the products of N independent Gaussian mixtures. In this sce-
nario, a separate joint probability matrix  is constructed for each
of the feature streams. Decomposition and adaptation of the vari-
ous feature streams is done independently of each other.
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Figure 1: Graphical illustration of PLSA decomposition. (a) A graphical representation of a conventional 2-variable distribution. Each edge represents a
joint probability of two specific values of the variables. (b) In a PLSA decomposition, the probability of each of the two variables is related only to the
value of an intermediate latent variable. (c) The joint probability of two specific values of the variables is the total probability of all paths linking the two
values.
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Û

Padapted ÛΣVT=
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4. EXPERIMENTS

The technique described in this paper was evaluated on the sys-
tem developed at CMU for the project “Let's Go! Improved
speech interfaces for the general public”. Using a telephone-based
bus information system, this project aims to improve spoken dia-
logue systems by targeting two specific user populations: non-
native speakers and elderly people. The proposed technique was
used to adapt the acoustic models used in Let’s Go! to non-native
speakers with a variety of accents.

The Let's Go! speech recognition system uses Sphinx-2, a large-
vocabulary continuous speech recognition system based on semi-
continuous HMMs. The acoustic models used for our experiments
were semi-continuous HMMs with a codebook of 256 Gaussians,
with 4000 senones. The base HMMs were trained on 102114
utterances (52 hrs.) of clean telephone speech from both native
and, to a lesser extent, non-native users of the CMU Communica-
tor system. 

The test and adaptation data were collected between Feb. and
Nov. 2003 using the Let’s go! system. The major part of the data
was gathered through directed experiments where the subjects
were given explicit tasks they had to complete using the system.
Also, we used data from spontaneous calls to the system that were
subsequently manually transcribed and labeled as native or non-
native. In all, 3729 utterances (189 mins.) were transcribed. These
data were partitioned into a test set of 449 utterances (20 mins.)
from non-native speakers, and an adaptation set comprising 3280
utterances (169 mins.) from non-native speakers.

The baseline WER of the original acoustic models on the test set
was 56.3%. In contrast, the same models yielded a 23.6% WER
on a set of 452 utterances from calls by native speakers.

For our experiments, we first retrained our models on the adapta-
tion data using the Baum-Welch algorithm initialized with the
Communicator models. Then we applied PLSA adaptation for dif-
ferent values of D by adapting different sets of matrices. The
resulting WERs on the test set are shown in Figure 2.

After Baum-Welch retraining, the models (labeled “NO PLSA”
on Fig. 2) already performed significantly better than the original
ones (NO ADAPT), with a WER of 46.3%. When applying PLSA
adaptation, experiments showed that adapting V, which matches
senones to latent variables, brings the most improvement in per-
formance. Indeed, adapting  alone systematically resulted in a

degradation in WER for any number of latent variables. Adapting
U alone or in combination with  brought only a small improve-
ment over the NO ADAPT models.

In terms of number of latent variables, for the best three matrix
combinations (V, V, U V), WER improves with D up to 32 or
64, and degrades for higher values. These values may be specific
to our adaptation set, which is both large (for an adaptation set)
and heterogeneous (it contains multiple speakers with different
accents). Further experiments are needed to study how these val-
ues vary with the size and homogeneity of the adaptation set.

Overall, the best result obtained by adapting all three matrices ,
U and V, with 32 latent variables. The latter yielded a WER of
41.3%, a 26% relative improvement over the NO ADAPT base-
line and 11% over the NO PLSA models.

5. DISCUSSION

The experiments show that the PLSA-based adaptation technique
is effective at improving WER. The experiments reported in this
paper utilize supervised adaptation of the models. In principle,
unsupervised adaptation is also possible in the same manner. This
will be part of future work.

The PLSA model trades off the resolution in the state output dis-
tributions with the robustness with which they can be estimated:
reducing the number of latent variables reduces the resolution of
the distributions, but improves the robustness with which distribu-
tion parameters can be estimated with small amounts of training
data. A superior approach might be to interpolate between the
original high-resolution models and the decomposed low-resolu-
tion models using a technique such as deleted interpolation.
Future research will explore this possibility. 

Experiments also indicate that the decomposition and reconstruc-
tion procedure itself introduces a degree of regularization that
improves recognition of test data. Future research will also inves-
tigate this phenomenon.
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 Figure 2.  Variation of word error rate with the number of latent variables
in the PLSA experiments.

Σ

Σ

Σ Σ

Σ


