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ABSTRACT 

The Carnegie Mellon Communicator is a telephone-based 
dialog system that supports planning in a travel domain. The 
implementation of such a system requires two complimentary 
components, an architecture capable of managing interaction 
and the task, as well as a knowledge base that captures the 
speech, language and task characteristics specific to the 
domain. Given a suitable architecture, the principal effort in 
development in taken up in the acquisition and processing of a 
domain knowledge base. This paper describes a variety of 
techniques we have applied to modeling in acoustic, language, 
task, generation and synthesis components of the system. 

1. INTRODUCTION 

System development involves a great deal of knowledge 
engineering, which is both time-consuming and requires a 
variety of experts to participate in the process. Therefore 
methods that seek to minimize this resource, for example 
through training based on domain-specific corpora are 
preferred. Effective use of corpora, however, requires 
developing techniques that intelligently make use of (typically) 
limited domain-specific resources.  

2. THE CMU COMMUNICATOR 

The Carnegie Mellon Communicator [8] is a telephone-based 
dialog system that supports planning in a travel domain. 
Currently the task is captured in an approximately 2700-word 
language based on corpora derived from human-human, wizard 
of oz and human-computer interaction. Domain information is 
obtained in real-time from sources on the Web. The system 
understands about 500 destinations worldwide, chosen on the 
basis of passenger statistics, with a concentration on North 
America. The system is available for public use, see 
http://www.speech.cs.cmu.edu/Communicator for details. 

The system uses the Sphinx II decoder in a real-time mode, 
with post-recognition barge-in; state-specific language models 
are used to improve recognition [10]. The top hypothesis 
produced by the decoder is processed by the Phoenix parser 
using a domain-specific semantic grammar (based on ATIS [2] 
but extended to cover Communicator-specific language). The 
resulting parse is evaluated for coherence then passed to the 
AGENDA dialog manager [9]. Coherence is evaluated using 
goodness of the parse (features such as coverage and 
fragmentation) as well as word-level decoder confidence; 
inputs deemed incoherent. The system monitors the frequency 

and pattern of rejection and uses this information to modify its 
strategy for interaction. The parse result is treated as a set of 
concepts that individual handlers on the agenda consume. Once 
matched, the concepts are either used directly (i.e., to set a 
target value) or are first transformed through a call to a domain 
agent. Currently the system uses three major domain agents, a 
travel backend, a date-time module and a user profile module. 
The transform result is either stored in a product structure (for 
this domain, an itinerary) or an immediate action taken (for 
example, notifying the user of an error). 

3. ACOUSTIC MODELLING 

It is our belief that optimal recognition performance can be 
obtained most readily using domain-specific data. Therefore 
our acoustic modeling efforts concentrate on using 
Communicator-specific data as the core of the training corpus. 
There are unfortunately two difficulties with this approach. 
Most of the early data captured for training will be from a 
relatively small pool of developers; at the same time the rate of 
data acquisition will be slow. Figure 1 shows the distribution 
of data across speakers for the CMU Communicator (through 
the Fall of 1999). Note that although several hundred speakers 
are represented in the corpus, seven speakers contribute about 
half the data. Figure 2 shows corpus growth over time. In 
August the Communicator was publicized on the Web and 
made available for public use, increasing variability.  

All models are 5-state semi-continuous HMMs, though the 
number of states differs as noted below. Model performance 
was evaluated using two different test sets, from June 1999 
(1759 utterances) and from October 1999 (3459 utterances). 
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The June set contains predominantly (though not exclusively) 
developer speech, while the October test set contains a greater 
proportion of public speech, as well as more challenging data 
(e.g., from cell phones). For current purposes the two sets are 
best thought of as “easy” and “difficult”. 

Model 1: For training this model, we used all transcribed data 
collected between April 1998 and January 2000, excluding the 

data collected during June 1999 and October 1999. Table 1 
shows performance for a 4000 tied-state model.  We observed 
that the triphone coverage of the corpus was rather sparse. For 
example, while there were 129516 possible triphones in the 
domain (computed from the dictionary used for recognition), 
only 15783 were present in the training data. To compensate 
for this, we identified all triphones (e.g., from city names), and 
created a list of these that appeared under-sampled in the 
training corpus. This in turn was used to design a set of 500 
sentences densely sampling these triphones and recordings 
made, totaling 3141 utterances. The addition of such focused 
supplementary data resulted in a relative reduction in word 
error rates of less than 5% on the above test sets. While this is 
a modest improvement we believe that this technique can 
produce significantly better generality (as a function of corpus 
size) than unfocussed collection. We can compensate for lack 
of data and for overfitting by smoothing the state distributions 
of the models with uniform distributions. This produces a 
slight improvement in error rate for both test sets (Model 1b). 

Model 2: We investigated state tying using a rule-based tying 
procedure prior to building decision trees. Decision trees were 
built using data recorded up to October 1999. The training data 
was observed to contain a large number of triphones with very 
poor representation. Since the data for these triphones was 
scarce, distributions learnt for these triphones, and decision 
trees built based on these distributions, were likely to be poorly 
estimated. In order to compensate for the under-representation 
of the triphones at this stage, states of triphones that 
represented similar transitions between phones were tied 
together in a preliminary state-tying step. The distributions of 
the various states of the triphones that were learnt in this 
manner were then used to build the final decision trees.  Since 
this tends to merge the identity of triphones with similar 

transitions, the entropy of adjacent states was also considered 
during the decision tree building process to maintain triphone 
identities. Following this, HMMs with 4000 tied states were 
trained using all available data. Model 2 represents a 
significant improvement in accuracy. 

 Test Set 
Model June 1999 Oct 1999 

1 13.5 21.0 
1b 13.3 20.4 
2 11.7 15.3 
3 13.1 15.4 
4 13.0 15.0 

Table 1. WER obtained using different acoustic models 

Model 3: It was observed that the performance of Model 1 on 
tracking test sets had steadily deteriorated in the Fall of 1999, 
due in part to a noisier signal. To avoid using such data to 
distribute parameters for training, decision trees were built 
using the ATIS corpus and pruned using the available 
Communicator data. Acoustic models with 5000 tied states 
were trained using these trees, and the same data as used by 
Model 2. This however did not appear to improve performance. 

Model 4: We trained models 6000 state models in a standard 
fashion, using all Communicator data recorded through April 
2000. Performance was better than Model 3 (likely due to 
simply more data) with better improvement for clean data over 
noisy data. This result contrasts with a 17.2% error rate 
observed for models trained on the much larger Switchboard I 
corpus and adapted to the Communicator domain (June 99 test 
set). 

4. MODELING LANGUAGE  

The basis for the Communicator language is the ATIS language 
developed previously for a similar domain (airline schedule 
information retrieval). Initial grammar coverage was quite low, 
however examination of utterances collected early on in the 
project yielded useful improvements. A corpus of 21890 
transcriptions (from June 1998 through February 1999) was 
used for this purpose. This was reduced to 5162 sentences 
through preprocessing (essentially replacement of tokens by 
class type) then analyzed in order of frequency. For the June 
1999 test set, the coverage error for an initial grammar 
(essentially ATIS with minimal additions to reflect new 
Communicator functionality) was 13.7% (10.4% for completely 
in-domain utterances). This was improved to 6.5% coverage 
error (3.3% for in-domain). The structure of a semantic 
grammar is such that, once a concept hierarchy is created, 
addition to language variants is a simple process. Although this 
process can be automated, we have not as yet done so. 

It has been our experience that once the core of the language 
for a domain is identified, it remains stable as long as the 
definition of the domain is not significantly altered. This is due 
in part to the inherent stability of certain sub-languages such as 
that for dates and times as well as an apparent independence 

Figure 2 Available acoustic data, over time. Note that, 
the usable acoustic data is typically 10-15% less than the 
total available (due to noise-only utterances). 
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between sub-domains comprising the full domain. Thus the 
addition of a hotel component to the domain does not 
materially impact the existing language for air travel. The 
significance of this observation is that it implies that the 
language for a domain can be incrementally extended without 
the concomitant need for restructuring the entire grammar as 
its complexity increases. It further raises the possibility that 
language components may be reused from application to 
application, provided that the sub-domains in question are 
substantially the same. 

In our work we make a distinction between a core language 
and a variable component that includes domain-specific 
entities. In the case of Communicator, destination names and 
the names of users registering for the service. The latter 
components can be easily modified to accommodate evolution 
and do not appear to impact the core language. This is 
accommodated in language modeling through the use of a class 
language model. The Communicator core language contains a 
total of 1141 words; it uses a total of 20 classes, of which ten 
are open classes (e.g., city names or airlines) and ten are 
closed. Of the latter three are deemed closed with respect to 
the domain (e.g., holidays, ordinal numbers). There is a total of 
1573 words in the class component of the language model. 

A key issue in managing the knowledge base as a whole is 
coordinating modifications that impact different components of 
the base. For example, the introduction of a new destination 
(e.g., Tripoli) requires changes to the database (airport code, 
etc.), the dictionary, the “city” class in the language model and 
the definition of the corresponding city concept in the 
grammar. We have experimented with various techniques for 
automating this process. Nevertheless human intervention is 
required at two points: the identification of alternative 
renderings of a particular identifier (e.g., JFK as well as 
KENNEDY for an airport name) and the choice of a 
pronunciation. While it is possible to automatically generate 
pronunciations as well as variants, human review is always 
necessary to ensure accuracy. Moreover contact with 
informants (e.g., the named person, or someone knowledgeable 
about a particular region) is unavoidable, since many variants 
are culturally defined rather than generated by rule. 

5. LANGUAGE GENERATION 

To date, most of the research in natural language generation 
(NLG) has focused on generating text using template-based or 
rule-based (linguistic) techniques. In order to overcome some 
of the difficulties in using the current NLG technologies for 
spoken dialogue systems, we investigated a corpus-based 
approach to NLG [7]. The corpus used consisted of 39 dialogs 
between a professional travel agent and her clients, a total of 
970 utterances and 12852 words. Utterances were classified 
into 29 categories, corresponding to major speech acts; within 
each utterance concepts were tagged as belonging to one of 24 
classes. For each utterance category, a 5-gram language model 
was built then used for generation (the NLG component was 
provided with a speech act and a set of concepts to transmit to 
the user). About half of all utterances in the Communicator are 
generated using this stochastic technique (the remainder 

involve set phrases specific to the system). Several evaluations 
were performed, showing that stochastic generation produces 
output equivalent to, and in some cases judged better than, 
handcrafted templates. The advantage of stochastic generation 
derives from two factors: it takes advantage of the practiced 
language of a domain expert (rather than the intuition of the 
developer) and it restates the problem in terms of classification 
and labeling, which do not require the level of expertise 
customarily needed for building a rule-based generation 
system. 

6. LIMITED-DOMAIN SYNTHESIS 

The quality of speech output in a dialog system is important to 
a user's perception of the system. That is, it must both be 
appropriate sounding, and also work fast enough so that user 
does not think something is wrong. In earlier versions of the 
CMU Communicator we used a general-purpose commercial 
speech synthesis system. More recently we have begun to 
experiment with synthesis tailored specifically to this domain. 

Unit selection synthesis, where appropriate sub-word units are 
selected from general speech databases, for example AT&T's 
NextGen [3], can produce very high quality synthesis. But the 
effort in building such general synthesizers is considerable. 
However it has been noted that unit selection synthesis is often 
better when the utterance to be synthesized is closer to the 
domain of the database. To take advantage of this observation, 
and with the intention of removing the bad selection examples 
for which unit selection synthesizers are, unfortunately also 
famed for, we used a limited domain synthesis technique where 
we record data specific in domain and ensure that the 
utterances to be synthesized are very close to that domain. The 
result offers very high quality synthesis that sounds almost 
human. The techniques used for this are more fully described 
in [4]. Important to this technique is not just the resulting high 
quality synthesis but that we also developed the tools, 
documentation and techniques to allow such high quality 
voices to be built for other systems reliably in a very short time 
(much less than a month). This voice was built in under a 
week. 

The stages involved in building such limited domain 
synthesizers are as follows. First we constructed a set of 
sentences for recording which adequately covered the desired 
domain. For Communicator we analyzed the utterances from 
logs of the most recent three months and sorted them by 
frequency. We selected the most common phrases (around 100) 
that are effectively simple unchanging prompts e.g. “Welcome 
to the CMU Communicator”, and “I'm sorry, I didn't understand 
that”. We then took the basic templates used by the language 
generation system and filled them out with the most frequent 
cities, airlines and ensured we had full coverage (at least one 
instance) for numbers, dates, times and other closed classes in 
the system. 

To provide coverage of over 400 cities and many airline names, 
we added around 500 sentences to our initial 100 “fixed” 
forms. Giving a prompt list of just over 600 utterances. These 
were then recorded in the style of a helpful agent. The 



 

 

recordings were autolabelled using a simple alignment 
technique between the naturally spoken utterances and 
synthesized equivalents. The utterances were then used to 
build a unit selection synthesizer using the algorithm first 
described in [[5]]. This technique takes all units of the same 
type and calculates an acoustic distance between and then 
using CART techniques recursively partitions the instances by 
questions about phonetic and prosodic context to produce 
clusters indexed by decision trees. 

In the original algorithm unit types are simple phones, but in 
this limited domain synthesizer we constrain this further by 
defining types as phones plus the word that phone came from. 
This apparently severe constraint allows the system to produce 
near perfect synthesis as the phones it selects always come 
from an instance of the word that is to be synthesized. This 
technique however is not just word concatenative synthesis. It 
is often, in fact common, that selections for a single word come 
different instances of that word joined at appropriate parts of 
the speech. The common prompts are invariably rendered from 
the original full prompts, thus preserving the original quality 
exactly. Other utterances with variable parts such as flights 
times, cities etc. are also rendered with comparable quality by 
selecting appropriate units from different utterances in the 
database. The stochastic language generation process described 
earlier is not a problem for this technique, reformulating 
similar sentence forms is dealt with adequately. 

Of course although we have coupled the synthesis closely to the 
generation it is still possible that some words are generated 
which do not appear in the recorded database. Rather than 
falling back to more general unit types for selection, which 
could easily produce very poor quality synthesis (and which 
cannot be detected automatically) we use a standard diphone 
synthesizer (from the same voice as the limited domain 
speaker).  After initially using the diphone synthesizer for the 
out of vocabulary word alone, it became obvious that the 
change in voice quality made that word very difficult to 
understand so if any word in a phrase is found to be out of 
vocabulary the whole phrase is synthesized with the backup 
diphone synthesizer this makes it easier to understand, even if 
it does reduce the overall quality. Over a period of three weeks 
the system synthesized 18,276 phrases, 459 of which (2.5%) 
contained out of vocabulary words (71 different words). These 
were all less frequent (or forgotten) places names. 

This work was done within the Festival Speech Synthesis 
Systems [6]. And the code, documentation and tools for 
building such voices and the data used in this particular voice 
are available without restriction from http://festvox.org/ldom/. 

7. DISCUSSION 

The Carnegie Mellon Communicator system has provided a 
framework for experimenting with domain-specific, corpus-
driven knowledge base configuration at different levels of a 
spoken dialog system. Corpus-driven techniques provide two 
benefits: they generally produce higher quality performance 
than general techniques, and they simplify the process of 
knowledge base development by reducing the level of expertise 

required since given the availability of basic algorithms that 
generate and make use of domain-specific models, human 
participation can be limited to corpus preparation which in turn 
can be codified in standard procedures.  
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