

TASK AND DOMAIN SPECIFIC MODELLING IN THE CARNEGIE
MELLON COMMUNICATOR SYSTEM

Alexander I. Rudnicky, Christina Bennett, Alan W Black, Ananlada Chotomongcol, Kevin Lenzo, Alice Oh,
Rita Singh

School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213 USA

{air,cbennett,awb,ananlada,lenzo,oh,rsingh}@cs.cmu.edu

ABSTRACT

The Carnegie Mellon Communicator is a telephone-based
dialog system that supports planning in a travel domain. The
implementation of such a system requires two complimentary
components, an architecture capable of managing interaction
and the task, as well as a knowledge base that captures the
speech, language and task characteristics specific to the
domain. Given a suitable architecture, the principal effort in
development in taken up in the acquisition and processing of a
domain knowledge base. This paper describes a variety of
techniques we have applied to modeling in acoustic, language,
task, generation and synthesis components of the system.

1. INTRODUCTION

System development involves a great deal of knowledge
engineering, which is both time-consuming and requires a
variety of experts to participate in the process. Therefore
methods that seek to minimize this resource, for example
through training based on domain-specific corpora are
preferred. Effective use of corpora, however, requires
developing techniques that intelligently make use of (typically)
limited domain-specific resources.

2. THE CMU COMMUNICATOR

The Carnegie Mellon Communicator [8] is a telephone-based
dialog system that supports planning in a travel domain.
Currently the task is captured in an approximately 2700-word
language based on corpora derived from human-human, wizard
of oz and human-computer interaction. Domain information is
obtained in real-time from sources on the Web. The system
understands about 500 destinations worldwide, chosen on the
basis of passenger statistics, with a concentration on North
America. The system is available for public use, see
http://www.speech.cs.cmu.edu/Communicator for details.

The system uses the Sphinx II decoder in a real-time mode,
with post-recognition barge-in; state-specific language models
are used to improve recognition [10]. The top hypothesis
produced by the decoder is processed by the Phoenix parser
using a domain-specific semantic grammar (based on ATIS [2]
but extended to cover Communicator-specific language). The
resulting parse is evaluated for coherence then passed to the
AGENDA dialog manager [9]. Coherence is evaluated using
goodness of the parse (features such as coverage and
fragmentation) as well as word-level decoder confidence;
inputs deemed incoherent. The system monitors the frequency

and pattern of rejection and uses this information to modify its
strategy for interaction. The parse result is treated as a set of
concepts that individual handlers on the agenda consume. Once
matched, the concepts are either used directly (i.e., to set a
target value) or are first transformed through a call to a domain
agent. Currently the system uses three major domain agents, a
travel backend, a date-time module and a user profile module.
The transform result is either stored in a product structure (for
this domain, an itinerary) or an immediate action taken (for
example, notifying the user of an error).

3. ACOUSTIC MODELLING

It is our belief that optimal recognition performance can be
obtained most readily using domain-specific data. Therefore
our acoustic modeling efforts concentrate on using
Communicator-specific data as the core of the training corpus.
There are unfortunately two difficulties with this approach.
Most of the early data captured for training will be from a
relatively small pool of developers; at the same time the rate of
data acquisition will be slow. Figure 1 shows the distribution
of data across speakers for the CMU Communicator (through
the Fall of 1999). Note that although several hundred speakers
are represented in the corpus, seven speakers contribute about
half the data. Figure 2 shows corpus growth over time. In
August the Communicator was publicized on the Web and
made available for public use, increasing variability.

All models are 5-state semi-continuous HMMs, though the
number of states differs as noted below. Model performance
was evaluated using two different test sets, from June 1999
(1759 utterances) and from October 1999 (3459 utterances).

0

20

40

60

80

100

1 41 81 121 161 201 241 281 321 361

talker

C
um

ul
at

iv
e

C
on

tri
bu

tio
n

Figure 1 Percent of training corpus account for by
individual talkers.

The June set contains predominantly (though not exclusively)
developer speech, while the October test set contains a greater
proportion of public speech, as well as more challenging data
(e.g., from cell phones). For current purposes the two sets are
best thought of as “easy” and “difficult”.

Model 1: For training this model, we used all transcribed data
collected between April 1998 and January 2000, excluding the

data collected during June 1999 and October 1999. Table 1
shows performance for a 4000 tied-state model. We observed
that the triphone coverage of the corpus was rather sparse. For
example, while there were 129516 possible triphones in the
domain (computed from the dictionary used for recognition),
only 15783 were present in the training data. To compensate
for this, we identified all triphones (e.g., from city names), and
created a list of these that appeared under-sampled in the
training corpus. This in turn was used to design a set of 500
sentences densely sampling these triphones and recordings
made, totaling 3141 utterances. The addition of such focused
supplementary data resulted in a relative reduction in word
error rates of less than 5% on the above test sets. While this is
a modest improvement we believe that this technique can
produce significantly better generality (as a function of corpus
size) than unfocussed collection. We can compensate for lack
of data and for overfitting by smoothing the state distributions
of the models with uniform distributions. This produces a
slight improvement in error rate for both test sets (Model 1b).

Model 2: We investigated state tying using a rule-based tying
procedure prior to building decision trees. Decision trees were
built using data recorded up to October 1999. The training data
was observed to contain a large number of triphones with very
poor representation. Since the data for these triphones was
scarce, distributions learnt for these triphones, and decision
trees built based on these distributions, were likely to be poorly
estimated. In order to compensate for the under-representation
of the triphones at this stage, states of triphones that
represented similar transitions between phones were tied
together in a preliminary state-tying step. The distributions of
the various states of the triphones that were learnt in this
manner were then used to build the final decision trees. Since
this tends to merge the identity of triphones with similar

transitions, the entropy of adjacent states was also considered
during the decision tree building process to maintain triphone
identities. Following this, HMMs with 4000 tied states were
trained using all available data. Model 2 represents a
significant improvement in accuracy.

 Test Set
Model June 1999 Oct 1999

1 13.5 21.0
1b 13.3 20.4
2 11.7 15.3
3 13.1 15.4
4 13.0 15.0

Table 1. WER obtained using different acoustic models

Model 3: It was observed that the performance of Model 1 on
tracking test sets had steadily deteriorated in the Fall of 1999,
due in part to a noisier signal. To avoid using such data to
distribute parameters for training, decision trees were built
using the ATIS corpus and pruned using the available
Communicator data. Acoustic models with 5000 tied states
were trained using these trees, and the same data as used by
Model 2. This however did not appear to improve performance.

Model 4: We trained models 6000 state models in a standard
fashion, using all Communicator data recorded through April
2000. Performance was better than Model 3 (likely due to
simply more data) with better improvement for clean data over
noisy data. This result contrasts with a 17.2% error rate
observed for models trained on the much larger Switchboard I
corpus and adapted to the Communicator domain (June 99 test
set).

4. MODELING LANGUAGE

The basis for the Communicator language is the ATIS language
developed previously for a similar domain (airline schedule
information retrieval). Initial grammar coverage was quite low,
however examination of utterances collected early on in the
project yielded useful improvements. A corpus of 21890
transcriptions (from June 1998 through February 1999) was
used for this purpose. This was reduced to 5162 sentences
through preprocessing (essentially replacement of tokens by
class type) then analyzed in order of frequency. For the June
1999 test set, the coverage error for an initial grammar
(essentially ATIS with minimal additions to reflect new
Communicator functionality) was 13.7% (10.4% for completely
in-domain utterances). This was improved to 6.5% coverage
error (3.3% for in-domain). The structure of a semantic
grammar is such that, once a concept hierarchy is created,
addition to language variants is a simple process. Although this
process can be automated, we have not as yet done so.

It has been our experience that once the core of the language
for a domain is identified, it remains stable as long as the
definition of the domain is not significantly altered. This is due
in part to the inherent stability of certain sub-languages such as
that for dates and times as well as an apparent independence

Figure 2 Available acoustic data, over time. Note that,
the usable acoustic data is typically 10-15% less than the
total available (due to noise-only utterances).

0

5

10

15

20

25

30

35

40

Apr-
98

Ju
l-9

8
Oct-

98
Ja

n-9
9

Apr-
99

Ju
l-9

9
Oct-

99
Ja

n-0
0

Apr-
00

H
ou

rs
 o

f r
ec

or
de

d
da

ta

between sub-domains comprising the full domain. Thus the
addition of a hotel component to the domain does not
materially impact the existing language for air travel. The
significance of this observation is that it implies that the
language for a domain can be incrementally extended without
the concomitant need for restructuring the entire grammar as
its complexity increases. It further raises the possibility that
language components may be reused from application to
application, provided that the sub-domains in question are
substantially the same.

In our work we make a distinction between a core language
and a variable component that includes domain-specific
entities. In the case of Communicator, destination names and
the names of users registering for the service. The latter
components can be easily modified to accommodate evolution
and do not appear to impact the core language. This is
accommodated in language modeling through the use of a class
language model. The Communicator core language contains a
total of 1141 words; it uses a total of 20 classes, of which ten
are open classes (e.g., city names or airlines) and ten are
closed. Of the latter three are deemed closed with respect to
the domain (e.g., holidays, ordinal numbers). There is a total of
1573 words in the class component of the language model.

A key issue in managing the knowledge base as a whole is
coordinating modifications that impact different components of
the base. For example, the introduction of a new destination
(e.g., Tripoli) requires changes to the database (airport code,
etc.), the dictionary, the “city” class in the language model and
the definition of the corresponding city concept in the
grammar. We have experimented with various techniques for
automating this process. Nevertheless human intervention is
required at two points: the identification of alternative
renderings of a particular identifier (e.g., JFK as well as
KENNEDY for an airport name) and the choice of a
pronunciation. While it is possible to automatically generate
pronunciations as well as variants, human review is always
necessary to ensure accuracy. Moreover contact with
informants (e.g., the named person, or someone knowledgeable
about a particular region) is unavoidable, since many variants
are culturally defined rather than generated by rule.

5. LANGUAGE GENERATION

To date, most of the research in natural language generation
(NLG) has focused on generating text using template-based or
rule-based (linguistic) techniques. In order to overcome some
of the difficulties in using the current NLG technologies for
spoken dialogue systems, we investigated a corpus-based
approach to NLG [7]. The corpus used consisted of 39 dialogs
between a professional travel agent and her clients, a total of
970 utterances and 12852 words. Utterances were classified
into 29 categories, corresponding to major speech acts; within
each utterance concepts were tagged as belonging to one of 24
classes. For each utterance category, a 5-gram language model
was built then used for generation (the NLG component was
provided with a speech act and a set of concepts to transmit to
the user). About half of all utterances in the Communicator are
generated using this stochastic technique (the remainder

involve set phrases specific to the system). Several evaluations
were performed, showing that stochastic generation produces
output equivalent to, and in some cases judged better than,
handcrafted templates. The advantage of stochastic generation
derives from two factors: it takes advantage of the practiced
language of a domain expert (rather than the intuition of the
developer) and it restates the problem in terms of classification
and labeling, which do not require the level of expertise
customarily needed for building a rule-based generation
system.

6. LIMITED-DOMAIN SYNTHESIS

The quality of speech output in a dialog system is important to
a user's perception of the system. That is, it must both be
appropriate sounding, and also work fast enough so that user
does not think something is wrong. In earlier versions of the
CMU Communicator we used a general-purpose commercial
speech synthesis system. More recently we have begun to
experiment with synthesis tailored specifically to this domain.

Unit selection synthesis, where appropriate sub-word units are
selected from general speech databases, for example AT&T's
NextGen [3], can produce very high quality synthesis. But the
effort in building such general synthesizers is considerable.
However it has been noted that unit selection synthesis is often
better when the utterance to be synthesized is closer to the
domain of the database. To take advantage of this observation,
and with the intention of removing the bad selection examples
for which unit selection synthesizers are, unfortunately also
famed for, we used a limited domain synthesis technique where
we record data specific in domain and ensure that the
utterances to be synthesized are very close to that domain. The
result offers very high quality synthesis that sounds almost
human. The techniques used for this are more fully described
in [4]. Important to this technique is not just the resulting high
quality synthesis but that we also developed the tools,
documentation and techniques to allow such high quality
voices to be built for other systems reliably in a very short time
(much less than a month). This voice was built in under a
week.

The stages involved in building such limited domain
synthesizers are as follows. First we constructed a set of
sentences for recording which adequately covered the desired
domain. For Communicator we analyzed the utterances from
logs of the most recent three months and sorted them by
frequency. We selected the most common phrases (around 100)
that are effectively simple unchanging prompts e.g. “Welcome
to the CMU Communicator”, and “I'm sorry, I didn't understand
that”. We then took the basic templates used by the language
generation system and filled them out with the most frequent
cities, airlines and ensured we had full coverage (at least one
instance) for numbers, dates, times and other closed classes in
the system.

To provide coverage of over 400 cities and many airline names,
we added around 500 sentences to our initial 100 “fixed”
forms. Giving a prompt list of just over 600 utterances. These
were then recorded in the style of a helpful agent. The

recordings were autolabelled using a simple alignment
technique between the naturally spoken utterances and
synthesized equivalents. The utterances were then used to
build a unit selection synthesizer using the algorithm first
described in [[5]]. This technique takes all units of the same
type and calculates an acoustic distance between and then
using CART techniques recursively partitions the instances by
questions about phonetic and prosodic context to produce
clusters indexed by decision trees.

In the original algorithm unit types are simple phones, but in
this limited domain synthesizer we constrain this further by
defining types as phones plus the word that phone came from.
This apparently severe constraint allows the system to produce
near perfect synthesis as the phones it selects always come
from an instance of the word that is to be synthesized. This
technique however is not just word concatenative synthesis. It
is often, in fact common, that selections for a single word come
different instances of that word joined at appropriate parts of
the speech. The common prompts are invariably rendered from
the original full prompts, thus preserving the original quality
exactly. Other utterances with variable parts such as flights
times, cities etc. are also rendered with comparable quality by
selecting appropriate units from different utterances in the
database. The stochastic language generation process described
earlier is not a problem for this technique, reformulating
similar sentence forms is dealt with adequately.

Of course although we have coupled the synthesis closely to the
generation it is still possible that some words are generated
which do not appear in the recorded database. Rather than
falling back to more general unit types for selection, which
could easily produce very poor quality synthesis (and which
cannot be detected automatically) we use a standard diphone
synthesizer (from the same voice as the limited domain
speaker). After initially using the diphone synthesizer for the
out of vocabulary word alone, it became obvious that the
change in voice quality made that word very difficult to
understand so if any word in a phrase is found to be out of
vocabulary the whole phrase is synthesized with the backup
diphone synthesizer this makes it easier to understand, even if
it does reduce the overall quality. Over a period of three weeks
the system synthesized 18,276 phrases, 459 of which (2.5%)
contained out of vocabulary words (71 different words). These
were all less frequent (or forgotten) places names.

This work was done within the Festival Speech Synthesis
Systems [6]. And the code, documentation and tools for
building such voices and the data used in this particular voice
are available without restriction from http://festvox.org/ldom/.

7. DISCUSSION

The Carnegie Mellon Communicator system has provided a
framework for experimenting with domain-specific, corpus-
driven knowledge base configuration at different levels of a
spoken dialog system. Corpus-driven techniques provide two
benefits: they generally produce higher quality performance
than general techniques, and they simplify the process of
knowledge base development by reducing the level of expertise

required since given the availability of basic algorithms that
generate and make use of domain-specific models, human
participation can be limited to corpus preparation which in turn
can be codified in standard procedures.

8. ACKNOWLEDGEMENTS

We would like to thank Maxine Eskenazi and Karin Gregory
for their work in managing corpus collection and transcription,
as well as lexicon maintenance. We would like to thank Ricky
Houghton for sharing some of his recognition results.

This research was sponsored by the Space and Naval Warfare
Systems Center, San Diego, under Grant No. N66001-99-1-
8905. The content of the information in this publication does
not necessarily reflect the position or the policy of the US
Government, and no official endorsement should be inferred.

9. REFERENCES

[1] R. Singh, B. Raj, and R. M. Stern, Domain adduced
state tying for cross domain acoustic modelling, Proc.
Eurospeech, 1999.

[2] Ward, W. and Issar, S. Recent improvements in the
CMU spoken language understanding system. In
Proceedings of the ARPA Human Language
Technology Workshop, March 1994, 213-216.

[3] Beutnagel, M.,Conkie, A., Schroeter, J., Stylianou, Y.
and Syrdal, A., The AT&T Next-Gen TTS system,
Joint Meeting of ASA, EAA, and DAGA, Berlin,
Germany, 18-24, 1999.

[4] Black, A. and Lenzo, K., Limited domain synthesis,
ICSLP2000, Beijing, China, 2000, this volume.

[5] Black, A. and Taylor, P., Automatically clustering
similar units for unit selection in speech synthesis,
Proceedings of Eurospeech, 1999, Rhodes, Greece,
1997, 2, 601-604.

[6] Black, A. and Taylor, P. and Caley, R., The Festival
Speech Synthesis System,
http://www.cstr.ed.ac.uk/projects/festival.html, 1998.

[7] Oh, A. H. and Rudnicky, A. Stochastic language
generation for spoken dialogue systems. ANLP/NAACL
Workshop on Conversational Systems, May 2000, pp.
27-32.

[8] Rudnicky, A., Thayer, E., Constantinides, P., Tchou,
C., Shern, R., Lenzo, K., Xu W., Oh, A. Creating
natural dialogs in the Carnegie Mellon Communicator
system. Proc. of Eurospeech, 1999, 4, 1531-1534.

[9] Xu, W. and Rudnicky, A. Task-based dialog
management using an agenda. ANLP/NAACL Workshop
on Conversational Systems, May 2000, pp. 42-47.

[10] Xu, W. and Rudnicky, A. Language Modeling for
Dialog System, ICSLP, 2000, Beijing, China, this
volume.

