
ABSTRACT
In this paper we describe a generalized classification method for
HMM-based speech recognition systems, that uses free energy as
a discriminant function rather than conventional probabilities.
The discriminant function incorporates a single adjustable tem-
perature parameter T. The computation of free energy can be
motivated using an entropy regularization, where the entropy
grows monotonically with the temperature. In the resulting gen-
eralized classification scheme, the values of  and 
give the conventional Viterbi and forward algorithms, respec-
tively, as special cases. We show experimentally that if the test
data are mismatched with the classifier, classification at tempera-
tures higher than one can lead to significant improvements in
recognition performance. The temperature parameter is far more
effective in improving performance on mismatched data than a
variance scaling factor, which is another apparent single adjust-
able parameter that has a very similar analytical form.

1. INTRODUCTION
Speech recognition systems typically model sound classes with
continuous density hidden Markov models (HMMs), the param-
eters of which are learned from some training data. When the test
data are similar, or matched, to the training data, the models
closely approximate the true distribution of the test data, and
maximum a posteriori probability (MAP) classification using
them can be expected to approach true Bayesian classification.
Often, however, the test data vary significantly from the training
data for reasons such as variations in the degree of spontaneity,
environmental noise, recording conditions, etc. As a result the
HMMs no longer represent the true distributions of the test data,
and recognition performance is poorer than that on matched data.

There has been a significant body of work in speech recognition
in compensating for mismatch in various ways. Compensation is
typically done either by modifying the data, such that they are
better represented by the HMMs, or by modifying the HMM
parameters so that they better match the test data [1]. Often these
methods require explicit models of the phenomena that cause the
mismatch, and become ineffective when the model is inappropri-
ate. The methods also require significant computational effort in
addition to that needed for recognition.

In this paper we take a completely different approach to the
problem of classifying data that have been rendered statistically
different from the training data by unknown phenomena. In
MAP classification, the discriminant function that is maximized
with respect to the classes is the joint probability of the class and
the test data. When class distributions are modelled by HMMs,
this can be expressed as the sum over all state sequences, of the
joint probability of the class, the state sequence, and the data. We
observe that if the state sequence were to be interpreted as the
configuration of the HMM, and the negative log of the joint
probability of the class, the state sequence, and the data as the
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f the configuration, then the MAP discriminant function
ical to the exponentiated negative free energy [2] of the
t a temperature . Consequently, MAP classifica-
quivalent to minimizing the free energy of the classifier
pect to the class at T = 1. In speech recognition systems
st work off complicated language graphs, the classes are
quences, and recognition is performed by Viterbi decod-
ich maximizes the joint probability of the class, the data,
 state sequence, with respect to the class. Viterbi decod-
 becomes the minimization of the free energy at T = 0.

aper we discuss classification with free energy at tem-
s other than 0 or 1. Now the discriminant function used
sification has no immediate probabilistic interpretation.
e models are representative of the distribution of the test
 optimal value of  can be expected to be close to 1 (i.e.

When the test data and the models are mismatched, the
 value of  is typically much higher. We further show
nimum free energy classification can be implemented for
ased classifiers by modifying the forward algorithm.

nventional forward and Viterbi algorithms are special
 this modified forward algorithm. 

ents run on multiple databases show that classification
e energy at increased temperatures can result in large
ments in recognition performance on mismatched data,
nventional MAP recognition or Viterbi decoding. Our
ents also show that this is more effective than the closest
e-parameter adjustment method, which scales the vari-
 the Gaussians by a constant factor. The rest of the paper
ged as follows: In the Section 2, we describe minimum
rgy classification. In Section 3 we explain how it can be
ed into the search in an HMM-based recognition system.
on 4 we present experimental results on two different

es, and discuss their implications in Section 5.

2. MINIMUM FREE ENERGY 
CLASSIFICATION WITH HMMS

tical pattern classifiers where the classes are modelled by
 a data sequence  is associated with a class  by
wo rules: the maximum a posteriori probability (MAP)
ation rule, or Viterbi decoding. In MAP classification,

(1)

 represents the a priori probability of class  and 
ts a state sequence through the HMM for . In Viterbi
g, classification is performed by the rule
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AP classification considers all state sequences through
M, Viterbi decoding is based only on the probability of
t likely state sequence. In our notation we suppress the
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parameters of the HMM, since they are fixed during classifica-
tion.

We now define a third classification rule based on the thermody-
namic measure of free energy, that generalizes both above rules.
Assume we have a system that has energy  when it is in a
configuration . If  is the probability of configuration , and
the system is at temperature , then the Helmholtz free energy

 is defined as [2]:
(3)

This is the difference between the average energy of the system
and  times the entropy of . When the system is at thermal
equilibrium at , the probability values  are such that 
is minimized. Thus the equilibrium free energy  is given by

(4)

The optimal values of  are given by the Gibbs distribution

(5)

where  is a normalizing term. Introducing the Gibbs distribu-
tion into Eq. 3 gives the following expression for free energy:

(6)

Let  now represent a state sequence through the HMM for class
. Let the energy of the HMM for the state sequence  be

(7)

The free energy of the HMM can be defined analogously to Eq 6:

(8)

(9)

The second term in Equation 9 is simply the log of the 
norm of the  values. At , it is the log of the sum
of all the  values and equals . At , it
is simply the log of the largest . 

We define the minimum free energy classification rule as
(10)

It is easy to see that Equation 10 is identical to Equation 1 when
, and to Equation 2 when . Thus, both MAP classi-

fication and Viterbi decoding are special instances of minimum
free energy classification. In these cases the free energy can be
related to the probability of the data. More generally however,

 does not have a simple probabilistic interpretation.

We note that free energy has often been used as an optimization
criterion in annealing methods for estimating parameters of sta-
tistical models [3]. In these methods the temperature of the sys-
tem is initially set to a high value and slowly decreased to 0, to
arrive at estimates of the parameters close to the global optimum.
In contrast, in minimum free energy classification the parameters
of the HMMs obtained during training remain unchanged. Clas-
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MPLEMENTATION IN HMM-BASED 
PEECH RECOGNITION SYSTEMS
s, direct computation of Equation 9 is impractical, since
 norm in the right hand side requires summation over all
uences through the HMM. However, the free energy can

puted efficiently by a modification of the forward algo-
e compute the partial free energy for all state sequences

ting at state  of the HMM for class , at any time  as:

(11)

 is the initial probability of ,  is the proba-
 transiting from  to , and  is the state output
lity of generating  from . The overall free energy is

(12)

 is the total number of data points in . 

eech recognizer, each class is a word sequence. Direct
entation of Equation 10 in a recognizer would require a
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practice, recognition is performed on compressed word
s shown in the example in Figure 1. Free energy cannot
tly computed on such graphs, unless the underlying word
 a tree. We propose an engineering approximation to the
ation of the free energy. Every state in the HMM for the
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e incoming transitions from multiple words are coloured
l other states are coloured green. The free energy for
ates is computed using Equation 11. Red states compute
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by implementation of minimum free energy classification
e four entry points into the trellis for STAR are red nodes

as boxes). All other nodes are green. At red node (a) the path
CK scores higher, and only this score is retained. At red
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the free energy of the best incoming transition. All states retain a
pointer to the source of the best incoming transition. This is illus-
trated by Figure 1. We call this specific implementation of free
energy classification using coloured nodes as Bushderby, since it
combines scores of entire bushes of incoming paths at green
nodes, instead of retaining only the best incoming score, as in
Viterbi decoding. This approximate implementation potentially
results in an anomaly in the computation of scores for states
within words that can be reached from multiple words: scores for
the green nodes within such words do not necessarily represent
any single partial word hypothesis, but can actually be a combi-
nation of the scores for all potentially competing partial hypothe-
sis that arrive at that word. This is also illustrated in Figure 1.
The anomaly is avoided only at  (i.e. Viterbi decoding).
However, as shall see in the next section, classification at 
can still lead to significantly improved error rates.

4. EXPERIMENTAL RESULTS
The performance of minimum free energy classification is poten-
tially related to several factors such as the temperature, the distri-
bution of the test data, and the entropy of the statistical models
themselves. A complete experimental analysis of the method is
however infeasible in the limited space available to us in this
paper. We therefore restrict ourselves to experiments pertaining
to the following issues: a) the effect of increasing temperature on
recognition of mismatched test data, b) the effect of increasing
degrees of mismatch, and c) comparison to the closest one-
parameter adjustment method that can be incorporated in con-
ventional Viterbi decoding, i.e. variance scaling.

All experiments were performed using the SPHINX-4 open-
source system (cmusphinx.sourceforge.net), in which minimum
free energy classification has been implemented through Bush-
derby. In all cases word-list grammars were used. Experiments
were performed on AURORA-2 and TID databases. AURORA-
2 consists of 8Khz sampled speech, derived from the TIDigits
database. The training and test utterances are continuous
sequences of digits. We used 8440 utterances of clean speech to
train the models. The test set, labelled testa in the database, com-
prises 28028 utterances (14 hours of speech recordings) that are
further subdivided into 7 sets, 6 of which are each corrupted by 4
noise types to an SNR of -5db, 0db, 5db, 10db, 15db or 20db.
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0 1 2 5 6.67 10 20 0

clean 15.8 15.9 16.0 17.2 17.9 22.7 44.5
20db 22.0 22.1 22.7 24.5 26.2 41.7 53.7 14.
15db 29.7 29.8 29.7 29.9 32.1 48.3 61.7 16.
10db 41.5 41.3 41.0 39.2 41.0 55.8 71.3 19.
5db 62.5 62.1 61.1 56.0 55.4 67.3 85.1 28.
0db 85.8 85.3 84.5 79.4 77.5 84.2 98.8 48.

Traffic Noise, WER%
20db 14.3 14.3 14.1 14.2 14.6 20.7 42.7 16.
15db 16.1 15.9 16.0 15.9 16.6 22.5 44.1 18.
10db 24.4 24.4 24.3 24.9 26.1 34.1 47.5 25.
5db 36.2 36.3 36.3 36.9 37.7 42.1 53.1 39.
0db 47.4 47.1 46.4 44.9 44.6 48.9 64.0 67.

Table 1:  Bushderby results on TID: Recognition performance on test data corrupted w
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 shows a plot of word error rates (WER%) obtained with
  values. Although it is not clear from the figure, the
re almost flat between  and . Recall that
represents Viterbi decoding, and  represents MAP
ation using the conventional forward algorithm. Figure 2
s the common belief that the Viterbi decoding is as effec-
recognition using the forward algorithm (while having
ractical advantages). However, surprisingly, we observe
SNR decreases, better recognition is obtained at .
imal  for low SNR data lies in the range 8-12. Finally,
rve that as the mismatch increases, the relative improve-
tween the performance at the optimal  and the perfor-
of Viterbi decoding initially increases. At SNR 10dB,
 improvements as large as 35% are obtained. But as the
h continues to increase the relative improvements

e again. At very high mismatch, increasing  does not

Music, WER%

1 2 5 6.67 10 20

9 15.1 15.0 15.1 16.6 28.1 45.6
3 16.2 16.0 16.0 16.9 30.7 47.9
7 19.4 19.0 18.6 18.9 33.0 50.8
9 28.6 27.8 25.2 25.3 36.6 56.7
0 47.5 46.1 41.8 39.8 48.2 67.3

Subway Noise, WER%
1 16.2 16.3 17.1 18.3 31.0 46.2
5 18.5 18.4 18.9 20.4 34.2 50.6
1 24.8 24.3 23.2 24.4 37.1 57.0
7 39.2 38.4 35.9 35.7 45.7 67.7
2 66.5 64.8 59.0 57.7 66.0 83.9
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improve performance.

A second set of experiments were performed using a Spanish
telephone speech database, consisting of 8KHz sampled speech,
provided by Telefonicá Investigación y Desarrollo (TID) to
CMU for internal evaluations of robustness algorithms. For
experiments with this database, continuous density 8 Gaussian/
state HMMs with 500 tied states were trained from 3500 utter-
ances of clean telephone recordings. The test data consisted of
1728 utterances (1 hour) of clean telephone recordings. For each
experiment, the entire test set was corrupted to various SNRs by
traffic noise, music, babble recorded in a bar, and noise record-
ings from a subway. These are real noise recordings provided
separately as an annexe to the TID database. Table 1 shows the
WERs obtained at various  values on test sets corrupted with
different noises to different SNRs. Again, we observe that the
best performance is for values of  larger than 1, except under
matched conditions. Here, the optimal values of  are observed
to lie in the range 2-10. On this test set the SNRs were not low-
ered to the level where Bushderby search became ineffective.

Finally Table 2 shows recognition performance obtained on the
TID database for clean speech and speech corrupted by babble
noise to 5dB, when the variance of the Gaussians are scaled.
Increasing variances does not improve recognition performance.

5. DISCUSSION
As expected, when the test data are matched, the best recognition
performance is observed at temperatures close to 1. When the
test data are mismatched, the best recognition performance is
obtained at raised temperatures, in the range 2-12. The difference
between Viterbi decoding and Bushderby search at raised tem-
peratures can be dramatic on mismatched data, where relative
improvements in recognition error are observed to be as large as
35% (on the AURORA-2 database). The relative improvements
are dependent on the degree of mismatch. As the degree of mis-
match increases, relative improvements achieved by raising the
temperature initially increase and then decrease again. In other
results not reported here for lack of space, it was also observed
that relative improvements due to raising the temperature are
related to the entropy of the HMMs themselves. Lower improve-
ments were observed on HMMs with higher entropy.

[**As expected, when the test data are matched, the best recog-
nition performance is observed at temperatures close to 1. When
the test data are mismatched, the best recognition performance is
obtained at raised temperatures, in the range 2-12. The difference
between Viterbi decoding and Bushderby search at raised tem-
peratures can be dramatic on mismatched data, where relative
improvements in recognition error are observed to be as large as
35% (on the AURORA-2 database). The relative improvements
are dependent on the degree of mismatch.**].

It seems difficult to derive the analytical characterizations of the
relationship between  and classification error that might
explain the observed behaviour. Nevertheless, there are some
theoretical results that support the use of the free energy for clas-
sification. For the binary case it is was shown [4] that abstaining
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Table 2:  WER(%) obtained by scaling Gaussian variances

Scaling Factor 1.0 1.1 1.2 1.3

Clean 15.9 15.8 15.8 16.3
Babble, 5dB 62.1 62.2 63.0 65.0

T

ssification when the free energy of both classes are
creases robustness against overfitting. Regularization
ntropy or a relative entropy (as done in Equation 4) has
d earlier to derive updates for on-line learning algorithm
 [5] and references therein). The updated distribution,
 identical to the Gibbs distribution of Equation 5, is the
to the minimization problem. The free energy is then
a potential function for the amortized analyses of the
 for the purpose of proving regret bounds that hold for

 sequences of examples.

g the temperature is equivalent to increasing the
of the Gibbs distribution, i.e. the Gibbs entropy, for the
uences. An alternative to using temperature as an adjust-
meter would be to use the Gibbs entropy as a parameter.
on remains to be explored.

hderby implementation of minimum free energy classifi-
 speech recognition systems results in the computation
lous scores that combine scores from several competing
es as explained in Figure 1. It is unclear whether this
us combination of scores hurts performance, as com-
 what might be obtained with a theoretically correct
ntation where each word sequence has its own HMM
erging of scores happens.

e note that free energy has often been used as a crite-
training statistical models in annealing methods [3]. In
thods, the model parameters are estimated by gradually
the system, to avoid local optima and learn the best
rs for a given training data. Once model parameters are
classification usually proceeds using conventional MAP
tion rules (i.e. T = 1). The free energy based classifica-

posed in this paper presents a counterpart to these
es. Independently of how the models were trained, we
the temperature during classification to obtain improved
s on mismatched data.
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