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ABSTRACT cies between the occurrence of frequency bands to estimate missing

- ) L ._frequency components. The statistical model used, however differs
;Ne present a new statls(tlca:(tec)hnflque fOLthe esltlrpatlon of thegng om conventional statistical models in the definition of the under-
requency components (4-8kHz) of speech signals from narrow-ban ing random variable. Conventional statistical models for speech
(0-4 kHz) signals. The magnitude spectra of broadband speech g ' b

delled as th ¢ f &Pa U that ts th odel the distribution of spectral energies (or log energies) in var-
modelled as the outcome of &lfa Urn process, that represents € jous frequency bands. The random variable — the energy — is con-

spectra as the histogram of the outcome of several draws from a MB¥huous in nature whose distribution must be characterized through

ture ”!“'“.“Om'a' distribution over _frequency indices. The multino- @/pothesized functional forms, such as Gaussian density functions.

mial distributions that compose this process are learnt from a corpu In contrast. in this paper we define tiiequenciesn the speech

of broadband (0-8kHz) speech. To estimate high-frequency compo- ' pap d P .
. signal (rather than thenergyat any frequency) as the random vari-

nents of narrow-band speech, its spectra are also modelled as the ouf:

come of draws from a mixture-multinomial process that is composed. le. If spect_ral decomposition of the s_lgnal IS _ach|eved through_ a
discrete Fourier transform, the frequencies are discrete, thus forming

of the learnt multinomials, where the counts of the indices of higher, discrete random variable. The maanitude spectrum of any seament
frequencies have been obscured. The obscured high-frequency coi)- . ; 9 P y Segm
speech is modelled as the outcome of many draws of frequencies

ponents are then estimated as the expected number of draws of th%r - - T )
T . . ) . fom a mixture multinomial distribution over the discrete frequency
indices from the mixture-multinomial. Experiments conducted on.

bandlimited signals derived from the WSJ corpus show that the pro'-n.d'ce.é' Every spectrum thus has an l_mde_rlylng mixture multino-
ial distribution. The component multinomials of the mixture are

posed procedure is able to accurately estimate the high frequené‘gsumed to belong to a prespecified set: only the mixture weights

components of these signals. with which the components combine are specific to the spectrum it-
Index Terms— Signal restoration, Signal reconstruction, Speechself.
enhancement The set of component multinomials are learned from a corpus
of broadband speech. In order to expand the bandwidth of a band-
1. INTRODUCTION limited signal, the mixture multinomial distribution underlying the
magnitude spectrum of each analysis window is estimated. Missing
In this paper we address the problembahdwidth expansion the  frequency bands are marginalized out of the component multinomi-
automated imputation of absent frequency components of a banQJS in order to estimate mixture Weights. The missing frequencies are
limited speech signal. Numerous techniques for bandwidth exparthen estimated as the expected number of draws of these frequencies
sion have been proposed in the literature. Typically, these tecHrom the estimated mixture multinomial, given the number of draws
niques address the problem of constructing high-frequency comp@®f other observed frequencies. While the proposed method is suit-
nents of telephone quality speech, since, as is well known that agble for the imputation okny set of absent frequency bands, we
propriate introduction of high-frequency components in such Sighave specifically evaluated it in the context of expanding the band-
nals makes them perceptually more pleasing, although not nece®idth of telephone-quality speech. Perceptual and qualitative evalu-
sarily more intelligible. Aliasing based methods, e.g. [1], constructations show that the technigue is able to accurately reconstruct miss-
the absent high-frequency components by aliasing low frequencigd§9 high-frequencies of band-limited signals, even for sounds such
through non-linear transformations of the signal. Codebook mapas low-energy fricatives for which bandwidth expansion has tradi-
ping techniques (e.g. [2]) map the spectrum of the narrow-band sigionally been considered difficult.
nal onto a codeword in a codebook, and derive the upper frequen- The rest of the paper is organized as follows. In Section 2 we
cies from a corresponding high-frequency codeword. Linear modefiescribe our mixture multinomial model for speech spectra. In Sec-
approaches (e.g. [3]) attempt to derive upper-band frequency contion 3 we describe how absent frequencies in a spectrum may be
ponents as linear combinations of lower-band components. Statiststimated using the proposed model. In Section 4 we describe how
cal approaches utilize the statistical relationships between the lowave determine the phases of absent frequencies. In Section 5 we de-
and higher-band frequency components of speech to derive the lattegribe the complete bandwidth expansion algorithm in detail, and in
from the former. Typically, the statistical relationships are characSection 6 we present experimental results.
terized through joint distributions of high- and low-frequency com-  Although the proposed method is highly effective, it still has
ponents, represented by models such as Gaussian mixture modedeyeral shortcomings as noted in the conclusions in Section 7. The
HMMs or multi-band HMMs (e.g. [4]). Alternately, they may be statistical models learned must be speaker-specific for the method to
captured through dimensionality reduction techniques such as nofre most effective in its current form. Temporal correlations etc. are
negative matrix factorization [5].
The approach presented in this paper is statistical in nature and 1This may be viewed as an instance of @iyR urn model with simple
follows the above-mentioned premise of exploiting interdependenreplacement




not being considered. Thus, the current paper must only be considiven by
ered to be a presentation of the basic premise of a new technique.
Various extensions that will address its current shortcomings will be

devised in future work.

2. THE MIXTURE MULTINOMIAL MODEL

(b)

Fig. 1. a) Urn and ball illustration of mixture-multinomial model for

spectra. A "picker” randomly selects urns and draws balls marked

with frequency indices from the urns. The spectrum is a histogra
of the draws. b) Corresponding graphical model. A latent variable
determines the probability with which frequengys selected.

The mixture multinomial model described in this section mod-
els the structure of the magnitude spectral vectors (henceforth sin
ply referred to as “spectral vectors”) of speech. It is assumed that a
speech signals are converted to sequences of spectral vectors throt
a short-time Fourier transform. The term “frequency” in the follow-
ing discussion actually refers to the frequency indices of the DF1
employed by the STFT.

We explain the mixture multinomial model for magnitude spec-
tra through the urn-and-ball example of Figure 1a. A stochastic
picker has a number of urns, each of which contains a number ¢

Pi(f) =>_ Pi(2)P(fl2) @
whereP; (z) represents tha priori probability of z in thet'" analy-
sis frame and?;( f) represents the multinomial distribution underly-
ing the spectrum of th&™ frame.

The parameters of the distributions are learnt from a corpus of
training speech signals through iterations of the following equations,
that have been derived using the EM algorithm:

bi(z)P(f]7)

Pi(zlf) = . P.(z")P(f]2) @
> Pi(2|f)Se s

P(flz) = S 2 Pl S g @

Py — > Pe(z|f)Ses (4)

> 2 P2 f)Se s

rthereSt,  represents thg*® frequency band of the th&” spectral

vector in the training corpus.
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balls. Every ball is marked with one of N frequency values. Each

urn contains a different distribution of balls. The picker randomly

selects one of the urns, draws a ball from it, notes the frequency op.

the ball and returns it to the urn. He repeats the process several tim 49: 2. Multinomial bases learnt for a speaker. The top panels show

He finally plots a histogram of the frequencies noted from the draws'.3Xamp|es of bases that capture harmonic characteristics of voiced
The lower panels show broadband bases that represent

The probability distribution of the balls from any urn in this example fsgundz. f h

is a multinomial distribution. The overall distribution of the process ricated components of speech.

is a mixture multinomial distribution. By our model, the number

of times a particular frequency is drawn represents the value of the

spectrum at that frequency. The complete histogram represents the Thg time-invariant multinomial distribution®(f|z) represent

magnitude spectrum of the analysis frame. Graphically, the mixturgne pasic building blocks for the mixture multinomials underlying all

multinomial model may be represented by Figure 1b: a latent varigpectral vectors. They may hence be viewed as the “basis vectors”

ablez determines the probability with which a frequengis drawn.  that explain speech spectra. Figure 2 shows several basis vectors

The latent variable represent the urns and th_e prqbablll_ty of draw- |earnt from training examples for a male speaker.

ing a frequencyP(£|z) represents the probability with whighmay In order to learn the generic spectral characteristics of all speech

be drawn from the"* urn. _ __in a speaker independent manner, the training corpus must include
Itmust be noted that Figure 1 represents the mixture multinomiagpeech from a large number of speakers, and a correspondingly large

distributionunderlyinga single spectral vector —the spectral vector nymber of multinomial bases must be learnt. However, if the spectral

itself is obtained by several draws from the distribution. The parayectors are obtained from N-point DFTs, no more thf2 + 1 in-

meters of the underlying model vary from analysis frame to analysigjependent multinomial bases can be learnt, limiting the ability of the

frame with one important constraint: we assume that the componemiodel to capture spectral patterns in a speaker-independent manner.

multinomial distributions remain constant across all analysis framesgq counter this problem, techniques that enable learnimyefcom-

while the mixture weights for the components vary. In terms of thep|ete representations(g. [6]2) must be employed. In this paper

urn-and-ball simile, this means that the set of urns remains the sani@ywever, we restrict ourselves to speaker-dependent modelling for
for all frames; however the picker selects urns according to a differgimpjicity.

ent probability distribution in every frame. Thus the overall mixture
multinomial distribution model for the spectrum of tHf& frame is

2also submitted to ICASSP 2007



3. IMPUTING UNSEEN FREQUENCIES IN A SPECTRAL is significant. At these frequencies, techniques such as phase dupli-
VECTOR cation or random selection can result in artefacts in the bandwidth-
expanded signal.
Once the parameters of the mixture multinomial model have been We have found that the most effective way for estimating the
learned, it can be used to impute the values of unseen or obscurgtlase of frequency components is to model them through a linear
frequency components in a spectral vector. £ e¢present a spectral transform of the phase of observed frequency componentsd ket
vector whose components; : f € F are observed, and the rest, represent a vector of the phases of the frequency componefts in
Sy : f € F are obscured or missing. For example, for the spectrunsimilarly, let ® = represent the vector of phases of the unseen fre-
of a frame of a telephone-bandwidth sigifalwould represent the quency components. We estimate as
set of all frequencies between 300Hz and 3.7Khz (that are actually
present in the signal) an& would represent all other frequencies Oy = AePr 9)
(that are missind.
The first step in the imputation process is the determination o
the mixture multinomial distribution underlying the complete spec-
trum. This distribution is given by:

¥vhereAq> is a matrix.
Ag is also learnt from the training corpus. Létr represent
a matrix composed of phase vectors comprising the phases of fre-
guency components if of spectral vectors from the training data.
Similarly let ® 2 represent the matrix of the corresponding phase
Ps(f) = ZPS(Z)P(][‘Z) ®) vectors from th]:e training data representing frequencies.ims is
? obtained as the following least-squared error estimate

where the multinomial baseB(f|z) are the ones that have been '
learnt from training data. The mixture weights (z) are learnt from Ag = Pinv(®r)® (10)
the partially observed spectrum by iterations of the following equawhere Pinv(® ») represent the pseudo inverse®s.
tions:

5. COMPLETE BANDWIDTH EXPANSION ALGORITHM
Ps(2)P(f]2)

Ps(2|f) S Ps(z))P(f|2') vieF We assume generically that the sampling frequency for all signals
ZZ Ps(2|f)S is sufficient to capture all desired frequencies (including both lower

Ps(z) = fer 1S s (6) and upper band frequencies). Test data that have been sampled at
> 2 ser Ps(Z|f)Sy lower frequencies must be upsampled to this rate. In this paper we

) ) ) ) have assumed a sampling frequency of 16 Khz, and all window sizes
Equation 6 has been derived from Equations 3 and 4, with the disstc. are given with reference to this number. We compute a short-
tinction that all computation is now performed only over the set ofiime Fourier transform of the signal using a Hanning window of
observedrequenciesrF. 1024 samples (64ms) with an hop of 256 samples between adjacent

The complete spectral vector represents the histogram of an Uames. The magnitudes and phases of the frequency components
known number of draws from the distribution of Equation 5. The ex-gre derived from the STET.

pected number of total draws from the distribution can be estimated | the training phase, a training corpus of broad-band speech

from the observed frequencies as is parameterized as described above. Mixture multinomial bases
S P(f|z) are extracted from the magnitude spectra of the training

N = Zfef ! ) speech using the algorithm described in Section 2. The linear trans-

Zfe]: Ps(f) form matrix As that relates the phases of the frequency components

The unobserved frequency components of the spectrum can ndjat we expect to observe in the band-limited signal and the phases
be estimated as of frequencies that will not be observed is also estimated.

In the operational phase, any band-limited signal whose miss-

gf, _ NPs(f) VieF @) ing frequency components ml_Jst be ﬁlled is first resampleo!, if neces-
sary, to 16Khz and parameterized using an STFT as described above.
Magnitude and phase components of the observed frequencies are

4. PREDICTING THE PHASE OF UNSEEN FREQUENCIES  gptained from the STFT. The magnitudes of missing frequency com-
. . ) ) ponents of each spectral vector are estimated using the procedure

The bandwidth expansion algorithm must not only estimate the magescribed in Section 3. The phases of the missing frequency com-
nitude of the missing spectral components, but also their phase. Thhants are estimated as described in Section 4. The bandwidth ex-
mixture multinomial model described in the earlier section is onlypangjon operation is performed separately for each spectral vector in
effective at predicting the magnitudes of unseen frequency compGpe hand-limited signal. Once the missing frequency components of

nents of spectral vectors. A separate procedure is required to esliy gpectral vectors have been estimated, the now-complete STFT is
mate their phase. Itis known that the human ear is relatively insenerted to obtain a full-bandwidth signal.

sitive to phase variations in higher frequencies. As a result, prior ap-
proaches to bandwidth expansion of narrow-band signals have used a
variety of simplistic methods for the estimation of the phase of high-

frequency components, such as the replication of the phase or lower- . . .
band components. Telephone bandwidth signals, however, are alkperiments were conducted on recordings from six speakers, three

missing very low frequencies, at which human sensitivity to hasénale and three female, from the “speaker independent” com_ponent
gvery q yiop of the Wall Street Journal Corpus. For each speaker, approximately

3itis assumed that the signal is sampled at the same rate as the broadbdffd minutes of full-bandwidth recordings were used to train mix-
signals from which multinomial bases have been learnt. ture multinomial bases, while the rest were used as test data. The

6. EXPERIMENTAL EVALUATION
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Fig. 3. The top panel shows the spectrogram of a broad-band speeétig. 4. Spectrograms of broad-band, narrow-band and bandwidth-
signal from a male speaker. The center panel is shows the spectrexpanded signals for a female speaker.

gram of the signal after the 0-300Hz and 3700-8000Hz frequency

bands have been filtered out. The bottom panel shows the spectro-

gram of the output of the bandwidth-expansion algorithm.

of more bases than the number of independent frequency compo-
nents in the spectrum. To learn a larger number of bases, as might
be needed to sustain speaker-independent implementation of the al-
full-bandwidth training data are sampled at 16Khz. Test recordinggorithm, sparse overcomplete learning methods must be employed.
were filtered using a 10th order Butterworth filter to only include The current implementation does not utilize temporal dependencies
frequencies in the range 300Hz-3700Hz, such as might be expectégtween spectral vectors. Such dependencies, however, are easily
in signals captured over a telephone channel. incorporated into the proposed model. The current work does not
Both training and test signals were analyzed using 64ms anawemploypriors on the distribution of mixture weights for the mixture
sis windows, corresponding to 1024 samples, resulting in Fouriemultinomial densities. The incorporation of priors into the proposed
spectra with 513 unique points. Adjacent frames overlapped by 76famework is also straightforward. We will be investigating these
points. 100 multinomial bases were computed for each speaker. €xtensions in future work.
The missing frequency bands corresponded to the the frequency
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