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Abstract

In classification methods which explicitly model class-conditional probability distributions,
the true distributions are often not known. These are estimated from the data available, to
approximate the true distributions. Errors in classification which arise due to this approximation
can, to some extent, be reduced if the estimated distributions are merely used to project data
into a space of like lihoods and classification is performed in that space using discriminant
functions. In this paper, we discuss the rationale behind this, and also the general properties
of likelihood projections. We demonstrate the utility of likelihood projections in improving
classification performance through experiments carried out on a standard image database and
a standard speech database.
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1 INTRODUCTION

Pattern classification methods can be broadly categorized into two groups: those that explicitly
require class-conditional probability values of the data being classified, and those that do not. The
former category is sometimes referred to as the sampling approach, while the latter category is
referred to as the diagnostic paradigm (Dawid, 1976; McLachlan, 1992). Methods in the former
category require explicit representations of the probability distributions of classes. These distri-
butions are usually estimated either using non-parametric kernel methods, e.g. Parzen windows
(Parzen, 1962), or parametric methods that assume specific parametric forms for the distributions,
e.g. Gaussian mixtures (McLachlan and Peel, 2000). Class-conditional probabilities are used to
estimate a posteriori class probabilities, which form the basis for classification (Duda, Hart and
Stork, 2000). In this paper we refer to these methods as distribution-based methods. The latter
category of methods, i.e. methods that do not require explicit computation of class conditional
probability values, typically compute functions, called discriminant functions, of the data being
classified, and classify the data based on the values taken by these functions. The functions used
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may be diverse, ranging from simple linear functions of the data (Highleyman, 1962) to complex
structures such as classification and regression trees (Breiman, Friedman, Olshen and Stone, 1984),
and need bear no direct relation to the a posteriori probabilities of the classes. We refer to such
methods as it discriminant-based methods in this paper.

The dichotomy between the two categories of methods is, however, not complete. Methods that
use explicit representations of class probability distributions are effectively based on discriminant
functions. For instance, the classification rule of a distribution-based two-class classifier is based
on the comparison of the ratio of the a posteriori probabilities of the classes against a threshold. In
this case, this ratio is the discriminant function. Multi-class classification can be expressed similarly
as the successive application of a series of such two-class discriminants. In this paper, however,
we will maintain the categorization of classification methods as we have described them, since it
imparts conceptual clarity to the subject matter of this paper.

Distribution-based classifiers are widely used for classification tasks in diverse disciplines, and
are particularly useful in classifying real-valued data (Brown and Prescott, 2000; Durbin, Eddy,
Krogh and Mitchison, 1999; Mantegna and Stanley, 2000; Wilks, 1995). However, the performance
of these classifiers is dependent on obtaining good estimates of the class-conditional distributions
of the various classes. While it is relatively easy to determine the best set of parameters for a given
parametric model of distributions, determining the most appropriate parametric form is frequently
a difficult problem. Inaccurate models can lead to reduced classification accuracies.

This paper shows how the performance of distribution-based classifiers can be improved under
this scenario, by classifying in a different space into which the data are projected. In the rest of
this paper we will refer to the space in which the original data reside as the data space. Instead of
treating class-conditional probability distributions as facilitators for the estimation of a posteriori
class probabilities to be used for Bayesian minimum error or minimum risk classification, we now
treat them as facilitators for non-linear projections, which we call likelihood projections, into a
likelihood space. The coordinates of this space are the class-conditional likelihoods of the data for
the various classes. In this space, the Bayesian classifier between any two classes in the data space
can be viewed as a simple linear discriminant of unit slope with respect to the axes representing
the two classes. The key advantage to be derived from working in the likelihood space is that
we are no longer restricted to considering only this linear discriminant. Classification can now
be based on any suitable classifier that operates on the projected data. When the projecting
distributions are the true distributions of the classes, the optimal classifier in the likelihood space
is guaranteed to result in error rates that are identical to that obtained by classifying the data in
the original space. When the projecting distributions are not the true distributions, the optimal
classification accuracy in the likelihood space is still guaranteed to be no worse than that obtainable
with the projecting distributions in the data space. On the other hand, classification accuracy in
the likelihood space can be higher than that in the data space in this situation. This feature of
likelihood projections permits us to use them to compensate, to some extent, for errors in the
modelling of class distributions in the original data space.

The use of secondary projections of data for improved classification has been widely dwelt
upon in the field of kernel-based classification methods (Burges, 1998; Cortes and Vapnik, 1995;
Scholkopf et. al., 1999). Several density function have also been used as kernels in these meth-
ods (e.g. Scholkopf et. al., 1997; Tresp, 2001). Most of these methods, however, are specific
to binary classification (Vapnik, 1998) and while they can be restructured to perform multi-class



classification (e.g. Lee, Lin and Wahba, 2001; Weston and Watkins, 1998), their performance is
frequently not as good as that obtainable with other multi-class classifiers. Although likelihood
projections and likelihood spaces can be related to kernel methods, the treatment in this paper is
different in that it does not propose specific densities or projections to go with specific classifiers.
The statement that this paper attempts to make is that when a distribution-based classifier is the
classifier of choice, then, rather than directly using it to classify in the data space, using the class-
conditional distributions to project the data into its likelihood space and performing classification
therein is a relatively better option. Furthermore, we do not impose any specific form on the clas-
sifiers to be used in the likelihood space. The approach proposed here is only a simple incremental
step from distribution-based classification, but can result in significant improvements in classifi-
cation accuracy. The simplicity of the approach should make it appealing in any situation where
distribution-based classification is to be performed for real-valued data. Many of the consequences
or properties of likelihood projections are not immediately obvious. These have been discussed in
greater detail in this paper and may serve to throw some light on empirically observed results in
various fields. For instance, researchers in the field of computer speech recognition have observed
large improvements in recognition accuracy when classification of speech sounds is performed in the
space of a posteriori class probabilities (Hermansky, Ellis and Sharma, 2000). These have largely
been unexplained so far.

At the outset we would like to point out that the concept of likelihood spaces is equally ap-
plicable to both discrete valued and continuous valued data. For this reason, we use the term
“probability distribution”, or simply “distribution”, generically to represent both, probability den-
sities for the case of continuous valued data and probability distributions for discrete valued data.
Where the treatment is specific to continuous valued data, we use the term “probability density”,
or “density”. In Section 2 of this paper we discuss likelihood projections and some key issues re-
lated to classification in likelihood spaces. In Section 3 we describe experiments that support our
statements. Finally, in Section 4 we present our conclusions.

2 LIKELTHOOD BASED PROJECTIONS

Consider an N-class classification problem, where data must be classified as belonging to one of
N classes C1,Cs,... ,Cn. Let Px (X|C1), Px(X|Cy),...,Px(X|Cy) represent the true distri-
butions of the data from each of the N classes. In this notation the subscripted X represents
the random vector and the X within the parentheses represents a specific instance of the random
vector Py (X|C;) thus represents the probability that the random vector X takes the value X,
given that it belongs to class C;. Let ﬁX (X|Cl),ﬁX (X|Ca), ... ’ﬁX (X|Cn) be the estimates of
the true distributions that have been obtained for a distribution-based classifier. Such estimates
could have been obtained, for example, by assuming a parametric form for the distributions and
estimating their parameters from some training data using a likelihood maximization algorithm
such as expectation maximization (Dempster, Laird and Rubin, 1977).

We define the likelihood projection of a vector X as the operation Ly (X), resulting in an N-
dimensional likelihood vector Yx as



Yx = Ly(X) = [log(Px (X|C1)) log(Px (X|Cs)) ... log(Px (X|Cn))] (1)

The i*" component of the likelihood vector Yy, Y)((i ) is obtained as Y)((i ) = log(ﬁX (X|C;)). We re-
fer to the distributions Px (X|C1), Px (X|C2),... ,Px (X|Cn) as the projecting distributions, and

to  the N-dimensional space whose coordinates are
log(Px (X|C1)),1og(Px (X|C2)),... ,log(Px (X|Cn)) as the likelihood space. Yx has N com-
ponents Y)((l),Y)(f), . ,Y)((N) , i.e. as many components as the number of classes being classified.

When the dimensionality of the data vector X is greater than N, the likelihood projection opera-
tion Ly (X) is a dimensionality reducing operation. When the dimensionality of X is greater than
N, Ly(X) is a dimensionality-increasing transformation.

2.1 Some Properties of Likelihood Projections

Likelihood vector representations have the following properties that relate to classification in like-
lihood spaces.

Property 1: Decision regions in the data space are compacted into contiguous regions in the
likelihood space

The projecting distributions represent a set of decision boundaries in the space of X that
partition the data space into N decision regions, one for each class. Here, by the term “decision
region” of a class we refer to the regions of the space that would be demarcated as belonging to

that class by an optimal Bayesian classifier. Thus, the decision region D; for class C; is the region
defined by

X eD; if P(Cy)Px(X|C;) > P(Cj)Px(X|C;) Vj#i (2)

where P(C;) represents the a priori probability of class C;. The boundary regions where
P(C;)Px (X|C;) = P(Cj)Px (X|Cj)for some j are not attributed to any class by Equation (2),
and must be attributed to one of the competing classes based on some preset rule. The decision
regions defined by Equation (2) may consist of several disjoint regions or be multiply connected.
In the likelihood space, these (possibly disjoint or multiply connected) regions are projected into a
region FE;, defined by

YxeB if YO+2 =YY +2 Vj#i (3)

where Z; = log(P(C;)). It is trivial to show that the region E; is convex, and therefore simply
connected: from Equation (3) we can deduce that if Yx, and Yx, both lie within E; then, for any
0<a<ll,

P+ (1—a)VP +Zi>a¥P + (- )Y +2; Vj#i (4)
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i.e. aYx, + (1 — @)Y, also lies in E;, thereby proving that E; is convex, and therefore simply
connected. Thus, the likelihood projection transforms even disjoint or multiply connected decision
regions in the data space to convex, simply connected ones in the likelihood space.

Figure 1 illustrates this property through an example wherein data vectors from two classes,
in a recording of a parametrized speech signal, have been projected into a likelihood space using
projecting distributions which were estimated from representative training data. The classes corre-
spond to speech and non-speech regions of the recorded signal. The two panels in the figure show
the scatter of these classes in the original data space and the likelihood space. We observe that the
result of the likelihood projection is to compact the classes, although the decision region for the
speech class is not convex in the left panel.
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Figure 1: Scatter of speech and non-speech data in an audio signal. The left panel shows the scatter in
the data space and the right panel shows the scatter in the likelihood space. The two axes represent the
first and second components of vectors which were derived using a Karhunen Loeve Transform (Jain, 1976)
based projection of the log spectra of 25ms frames of the speech signal. In the left panel the dark crosses
represent data vectors from non-speech regions. The grey dots represent data from speech regions. In the
right panel the colours are inverted for visual clarity. The projecting distributions for both classes were
mixtures of 32 Gaussians, computed from speech and non-speech training data. The dotted line in the right
panel represents the optimal classifier in the data space. The solid lines represent the optimal linear and
quadratic discriminants in the likelihood space.

Property 2: The optimal classifier in the likelihood space is guaranteed to perform no worse than
the optimal Bayesian classifier based on the projecting distributions.

This follows as a consequence of Property 1. In the data space, the optimal minimum-error
Bayesian classifier is given by the rule (Duda et. al. 2000)

XeCi:i= arg;nax{PX(X|Cj)P(Cj)} (5)

i.e., X is classified as belonging to the class C;, such that ¢ indexes the class with the largest value
for Px (X|C;)P(C;). A classifier which uses the set of estimated distributions approximates this
as



XeC:i= arg;nax{ﬁx (X|C;)P(C))} (6)

which can be equivalently stated in terms of log likelihoods as

XeCi:i= arg;_nax{log(ﬁx (X|C))) + log(P(C;))} (7)

Equation (7) can be restated as a sequence of pair-wise comparisons between classes. Classifi-
cation between any two classes C; and C} is performed as

X e{ Ci if log(Px (X|Cy) — log(Px (X|C))) > Ty -
C; otherwise

where T;; is log(P(Cj)) — log(P(C;)). Classification between N classes requires N — 1 pair-wise
classifications of the kind defined by Equation (8). The pair-wise comparisons represented by
Equation (8) can be easily translated into the likelihood space. To do this, we define a vector A;;
as A;; =[0010 ... —10 ...] where the 1 occurs in the i’ position and the —1 is in the j™
position. Equation (8) can now be redefined in the likelihood space as

X C; if Ag;-YX >Tij
C; otherwise

(9)

where Yx represents the likelihood projection of X. Equation (9) is a simple linear discriminant
with a slope of unity. In the likelihood space, as in the data space, classification between N classes
requires N — 1 classifications of the kind defined by Equation (9). It is thus possible to define
a classifier in the likelihood space that performs identically to a Bayesian classifier based on the
projecting distributions in the space of X. It follows that the performance of the optimal classifier
in the likelihood space cannot be worse than that obtainable with the projecting distributions in
the data space. It also follows that if the projecting distributions are the true distributions of the
classes Px (X|C;), the optimal classification performance in the likelihood space is identical to the
optimal classification performance in the data space.

2.2 Classification in Likelihood Spaces

As a consequence of Property 2 in Section 2.1, the performance of the optimal classifier in the like-
lihood space is lower bounded by the classification accuracy obtainable with the optimal Bayesian
classifier based on the projecting distributions in the data space. Therefore, it may actually be
possible to estimate classifiers in the likelihood space that perform better than the optimal Bayesian



classifier estimated from the projecting distributions. This constitutes the subject of discussion in
this section.

In the data space the true distributions of the data may be extremely complex, and the distribu-
tions modelling the classes could result in complicated, possibly even multiple, disjoint, estimated
decision boundaries. Likelihood projections map the regions demarcated by these boundaries onto
a single, contiguous region in the likelihood space. A Bayesian classifier between any two classes
in the data space maps onto a linear discriminant of slope 1.0 in the likelihood space. When pro-
jecting densities are continuous at the decision boundaries in the data space, data points that are
misclassified in the data space, but lie adjacent to the decision boundaries, get mapped onto the
region adjoining this linear discriminant in the likelihood space, regardless of the spatial complexity
of the boundaries in the data space.

The geometrical simplicity of having misclassified regions adjoin the convex region representing
any class in the likelihood space renders it possible to easily determine a different functional form for
the discriminant which reduces the average classification error, compared to the linear discriminant
of slope 1.0. Even simple classifiers such as linear, quadratic or logistic discriminants, that are
only effective on contiguous classes, can be used. This is illustrated in the right panel in Figure
1. In this panel, the dotted line represents the optimal Bayesian classifier estimated in the original
data space. The slope of the line is 1.0. The Y intercept of the line was estimated using held-out
test data. The thin solid line represents the optimal linear discriminant in the likelihood space,
also estimated using the same held-out data. This discriminant results in 4.5% lower classification
error relative to the dotted line. The solid curve represents a quadratic discriminant function, also
estimated on the same held-out data, that results in even lower error than the thin solid line.

The determination of a new linear discriminant can be interpreted as corresponding to the de-
termination of linear or non-linear transformations of class distributions in the data space to achieve
better approximation of optimal classification boundaries. For instance, a linear discriminant of
slope 1.0 with a Y intercept other than that of the original linear discriminant, corresponds to
scaling of class distributions in the data space. A linear discriminant of slope other than 1.0 in
the likelihood space corresponds to exponentiating the class densities by some power in the data
space. The transformations of the densities result in a different set of decision boundaries than
those obtained from the original class-conditional densities. The discriminants in the likelihood
space can be construed to map onto these modified decision boundaries in the data space. Figure 2
illustrates this with an example. In this example 120-dimensional log spectral vectors, derived from
a speech signal as explained later in the Section 3, have been projected into two dimensions. The
probability density of each of the classes was modelled by a single Gaussian density. The dotted
curve shows the classification boundary obtained from these Gaussian densities. The solid curve
shows the decision boundary obtained by mapping the optimal linear discriminant separating the
two classes in the corresponding likelihood space back into the data space. The reverse mapping
Qf the linear disgriminant is simple in this case: let Cy and C5 represent the two classes. Let
Px (X|C;) and Px (X|C3) be their estimated Gaussian densities. Let Yy represent the likelihood
vector derived by projecting a vector X using these densities. We have

Yx = (Y, YY) = (log(Px (X|C1)), log(Px (X|C2))) (10)
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Figure 2: Tllustration of classification boundaries obtained from original class distributions, and from the
transformed class distributions represented by linear discriminants of non-unit slope in likelihood space. The
grey and black regions represent the scatter of data from two classes. The white spots in the centers of these
classes represent the location of their means. The dotted curve represents the decision boundary obtained by
modelling both classes as Gaussians. The solid curve represents the mapping of the optimal linear classifier
in the likelihood space defined by the Gaussian class densities, back into the data space.

The optimal linear discriminant in the likelihood space can be represented as

AavP 4+ B=vP (11)

This can be represented in terms of the projecting densities as

Py (X|01)"e? = Px (X|Cy) (12)

The new decision boundary is thus the locus of all vectors X that satisfy Equation (12).

More generally, however, such simple interpretations are not possible. For instance, a quadratic
discriminant of the form

Y2+ DY+ BYDYY + F=0 (13)

maps onto the following discriminant in data space:

log(Py (X|C1))+Elog(Px (X|C2))ﬁX(X|CQ)D108;(13X (X|CZ))€F

Px(X|Ch) =1 (14)



Clearly, this cannot be obtained by any simple transformation of the individual class distributions,
due to the presence of the cross term Y)((I)Y)((Q). Other, more complex discriminants in likelihood
space are mapped onto even more complex functions of class distributions in the data space.

2.3 Dependence of Classifiers in Likelihood Spaces on Projecting Distributions
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Figure 3: Synthetic two-class example illustrating why it may be possible to obtain improved classification
performance in likelihood spaces. (a) The true densities of the classes are Rayleigh (shown by the dotted
curves), but are inaccurately modelled as Gaussians (solid curves). The gray region between the true decision
boundary By and the estimated decision boundary Bestimated represents data that will be misclassified.
(b) The scatter of likelihood space representations of the data from the two classes. The grey and black
portions of the figure represent data from the two classes. The solid line represents Bestimated and the star
represents the true optimal decision threshold By.,.. The dotted line passing through the star represents
an optimal linear discriminant. (c) The dark solid curves represent the scaled versions of the Gaussians
in (a) that are implicit in the optimal (dotted) linear discriminant in (b). They intersect at the optimal
classification boundary. The lighter dotted curves represent examples of discriminatively estimated Gaussian
distributions for the classes. They too intersect at the optimal classification boundary.

The reduced classification error in the likelihood space is a consequence of compensation for
errors in modelling class distributions in the data space. In the context of classification, distribution
modelling errors can result from two causes. First, the analytical model chosen to represent the
distribution of a data set may be inappropriate for the data. Second, the parameters of the model for
any class are usually estimated such that the resulting distribution best represents the distribution
of the training data for that class, without reference to the distributions of other classes. Figure
3a illustrates the problems that can result from this using a synthetic example. In the example
presented, data are one-dimensional. Two classes with Rayleigh distributions have been erroneously
modelled as Gaussian. The dotted curves in the left panel show the true probability densities of the
two classes. The solid curves show the estimated Gaussian densities. The first and second moments
of the Gaussians shown in the figure are identical to those of the true (Rayleigh) distribution of the
data, i.e. they represent the maximum likelihood Gaussian estimates that would be obtained with
unlimited training data from the two classes. The optimal decision boundary, Byyye, is the value
of the abscissa at the point where the true densities cross over. This is indicated by the vertical
dotted line. The estimated decision boundary, Bestimated, 0Ccurs at the abscissa where the Gaussian



estimates of the densities cross over and is indicated by the vertical solid line. The grey shaded
region represents data that will be misclassified due to the difference between By and Begimated-
This error is the direct result of erroneous modelling of Rayleigh distributions as Gaussian.

Figure 3b shows the two-dimensional likelihood projection of data from the two classes. We note
that the curve represents a one-dimensional manifold in the two-dimensional likelihood space. This
is expected because the projection is a deterministic dimensionality-increasing transform (Conlon,
1993). The estimated Bayesian classifier in the data space is represented by the solid line of slope
1.0 in this panel. The star on the curve represents the optimal decision threshold, Biy,e in the
data space. The optimal classifier in the likelihood space can therefore be any line or curve that
passes through the point marked by the star, e.g. the linear discriminant represented by the dotted
diagonal line in the figure.

As explained in Section 2.2, classification with a linear determinant other than the solid line in
the figure is equivalent to classification with a transformed version of the class distributions in the
data space. For example, the optimal discriminant represented by the dotted line in Figure 3b is
equivalent to classification with the scaled Gaussians shown in Figure 3c: as a result of the scaling,
the Gaussians now cross over at the optimal classification boundary.

The optimal classification boundary may also be obtained by modelling the classes with a
different set of Gaussians in the first place, by discriminatively training them to optimize classifi-
cation. Several methods for such discriminative training of class distributions have been proposed
in the literature (e.g. Normandin, Cardin and De Mori, 1994). Figure 3c also shows an example
of such discriminative Gaussian estimates for the Rayleigh class distributions of Figure 3a. They
too cross over at the optimal classification boundary. The principle of classification in likelihood
spaces remains valid, however. Even when class distributions are discriminatively trained, the per-
formance of the optimal classifier in the likelihood space derived from these distributions is only
lower bounded by that of the Bayesian classifier based on the distributions, in the data space.
Also, regardless of the manner in which class distributions are trained, the form of the classification
boundaries in the data space is constrained by the model chosen for the distributions. For instance,
if class distributions are modelled as Gaussian, the resultant Bayesian classifier is constrained to
be a quadratic discriminant. On the other hand, the data-space discriminants corresponding to a
discriminant in likelihood space can be significantly more complex than those obtainable with the
Bayesian classifier in data space. For example, when class distributions are Gaussian, even a simple
quadratic discriminant in the likelihood space with no cross terms corresponds to a fourth-order
polynomial discriminant in the data space. It is therefore plausible that a superior classifier may
be obtained in the likelihood space even when class distributions are discriminatively trained.

It must be clear from the discussion thus far that when classifiers in the likelihood space are
simple linear or quadratic discriminants, improved classification in the likelihood space is largely a
consequence of compensating for classification errors in regions adjoining the classification bound-
aries in the data space. Such discriminants cannot be expected to compensate for classification
errors which occur for other reasons. Such errors, for example, can occur when the distributions
modelling the classes in the original space miss entire regions of the optimal decision regions (given
by the true class distributions) altogether.

Classifiers which are more complex than simple linear or quadratic discriminants may also be
defined in the likelihood space. For instance, one may define distribution-based classifiers within
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the likelihood space. Such classifiers may result in better classification than linear or quadratic
discriminants. In general however, as the decision boundaries in the data space approach the
optimal boundaries, the gains to be expected from classifying in likelihood spaces quickly diminish.
Also, in this situation, the decision boundaries in the data space that the optimal discriminant
in the likelihood space maps onto, approach the decision boundaries given by the class densities
themselves.

It must be recognized that we are only guaranteed that the best classifier in the likelihood
space performs at least as well as the best Bayesian classifier in the data space that is based on
the projecting distributions. This is not a guarantee that it performs at least as well as the best
classifier of any kind in the data space. In fact, there is no assurance that the best possible classifier
in the likelihood space can perform comparably with the best possible classifier in the data space,
unless the likelihood projection is invertible.

2.4 Localization of Data Vectors by their Likelihood Projections

The likelihood projection would be invertible if it could be guaranteed that no more than a single
data vector projects onto any likelihood vector. Likelihood projections are however generally not
invertible, as demonstrated in Figure 4, and the likelihood projection of a data vector cannot be
guaranteed to uniquely identify the data vector. Nevertheless we do note that as the number of class
distributions in the likelihood projection increases, the likelihood projection of a vector increasingly
localizes it in the data space. Consider a likelihood vector Yx with components Y)((l) , Y)(f), ceey Y)((N),
that has been obtained by the projection of a vector X. Let U represent the region in the data

space such that

exp(Y)((i)) < ﬁX(X : X e UGy < exp(Y)((i)) +e (15)

where ¢ is an infinitesimally small number. By this definition, U% is the set of all data vectors that
have a class-conditional probability for C; that lies in the interval [exp(Y)((i)),exp(Y)((i )) + ¢]. The
size of U% is the volume of the data space that lies within it. Knowledge of Y)((i ) localizes X to lie
in U%. Further, knowledge of Y)((i ) and Y)((j ) localizes X to the region U% N Ug(. Thus, knowing the
first j components of the likelihood vector localizes X to lie in the region V7§ defined by

Vi=[\Uk (16)
i=1
It is easy to see that
Vi D2VED...D VY (17)
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1.€., V)% is a decreasing series. Knowledge of the likelihood vector Yy is equivalent to knowing that
X lies within V)I(V , i.e. Yx contains the positional information that X lies in V)I(V . We note that V)J(v
is guaranteed not to be larger than the smallest U%, while it can be much smaller. We also note
that V)J(V may be empty for many likelihood vectors and is non-empty only if the likelihood vector
has been generated from any data vector. Conversely, for any likelihood vector Yx that has been
generated thorough the projection of a data vector X, V)](V cannot be empty and must contain at
least one data point, namely X itself.
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Figure 4: Ilustration of the invertibility of likelihoods. The two Gaussians transform the data point X, into
the pair of density values G1(X,) and G2(X,) respectively. In the left panel the two Gaussians have different
means. The two vertical dotted lines show the other values of X that result in density values G1(X,) and
G2(X,). It is clear that there is only one point that results in both G1(X,) and G»2(X,) . Thus, G1(X,) and
G2(X,) uniquely identify X,. In the right panel the means of the two Gaussians are identical. In this case
there is a second value of X that has density values G1(X,) and G2(X,), and the mapping from X values
to density values cannot be inverted.

3 EXPERIMENTS

In the discussion so far, we have only discussed the ezistence of classifiers in the likelihood space
that can classify no worse than a Bayesian classifier in the data space. The mere existence of
such classifiers, however, is no assurance that they can, in fact, be estimated, or that the actual
classification performance of the classifiers estimated in likelihood space will always be superior to
that of the Bayesian classifier. Estimation of classifiers is always difficult, and the final performance
of any estimated classifier is governed by many factors such as the estimation procedure used, size of
training data, etc. We hypothesize that since decision regions of the Bayesian classifier are mapped
onto convex regions of the likelihood space, it would be simpler to estimate better classifiers in
the likelihood space. This hypothesis must be experimentally substantiated, and we do so in this
section with experiments on the Brodatz texture database (Brodatz, P., 1966) and the TIMIT
speech database (Zue, Seneff and Glass, 1990).
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3.1 Classification of Visual Textures

Visual textures are images that are characterized by some degree of homogeneity, and typically
contain repeated structures, often with some random variation. Thus, images of the surface of
water, fabrics, cloudy skies, even wallpaper are all considered textures. In 1966, a photographer
named Phil Brodatz published a set of 112 textures, including pictures of walls, matted surfaces,
etc., in a book titled Textures: A Photographic Album for Artists and Designers. The “Brodatz
texture database” has been derived by extracting subimages from 8-bit 512x512 pixel digitization
of these images (e.g. Picard, Kabir, and Liu, 1993). Nine non-overlapping 128x128 pixel subimages
have been extracted from each of the textures, resulting in a set of 1008 images. Figure 5 shows a
few examples of Brodatz’s textures.

Figure 5: Examples of Brodatz’s textures.

We evaluated classification in likelihood spaces on this database. For our experiments, the 9
subimages for each texture were separated into a training set of 8 images and 1 test image, resulting
in an overall train- ing set of 996 images and a test set of 112 images. The partitioning into train
and test sets was done in 9 different ways in a jack-knife procedure, effectively increasing the test
set size to 1008 images. The aim of all experiments was to identify the textures that test images
were drawn from.

For the experiments, each 128x128 pixel image was parameterized into a set of 4096 64-
dimensional vectors as follows: the image was segmented into squares of 8x8 pixels, where ad-
jacent squares overlapped by 6 pixels. The edges of the image were padded with zero valued pixels
such that every pixel in the image was included in exactly 16 squares. A 64-component discrete
cosine transform (DCT) was computed for each square (Vasconcelos and Carneiro, 2002). The
64-dimensional DCT vectors for any image were assumed to be independent and identically dis-
tributed. The distributions of the DCT vectors for the textures were assumed to be mixtures of
Gaussians with diagonal covariance matrices. The number of Gaussian components in the mixtures
represented a parameter that controlled the degree to which the esti- mated density fit the data.
Mixtures with 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 and 4096 Gaussians were trained from the
32768 vectors derived from the 996 training images for each texture. In each experiment, the distri-
butions for all textures had the same number of Gaussian components. The a priori probabilities
of all textures were assumed to be identical.

Classification in the data space was performed using the joint log likelihood of all 4096 fea-
ture vectors obtained from the test image. Joint log likelihoods of the classes were also used to
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project test images into likelihood space. Although the number of classes (112) is greater than the
number of components in the feature vector (64), the projection into likelihood space nevertheless
constituted a dimensionality reducing transform, since the entire set of 4096 64-dimensional vectors
for each image was projected onto a single 112-dimensional likelihood vector. For classification in
likelihood space, linear discriminants were trained to classify between each pair of classes using a
least squares procedure (Duda et. al., 2000). Since there were 8 training images from each texture,
only 16 likelihood vectors were available to train any linear discriminant. A total of 6216 linear
discriminants were trained. Classification was performed using the voting mechanism based on ex-
haustive pair-wise classification suggested by Friedman (1996), where pair- wise classification was
performed between all pairs of classes. The class that was selected most frequently by the pair-wise
classifiers was chosen to be the output of the multi-class classifier.

Figure 6 shows the combined results from the 9 jack-knife experiments. The dotted line in the
figure shows the classification accuracies obtained in the data space as a function of the number
of Gaussian components in the class distributions. The solid line shows classification accuracies
obtained in the corresponding likelihood space. In almost all cases, the classification accuracy
obtained in the likelihood space is higher than that in the data space. In the data space, the best
classification result is obtained with mixtures of 128 Gaussians. In the likelihood space, the best
classification accuracy is obtained when the projecting densities are mixtures of 64 Gaussians. For
mixtures of more than 16 Gaussians and fewer than 512 Gaussians however, the difference between
the performance obtained in the data and likelihood spaces is statistically insignificant as measured
using McNemar’s test (Siegel, 1956). On the other hand, the differences between the two at the
extremes of the curves in the figure are significant to the 0.05 level or better.
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Figure 6: Classification accuracy on Brodatz textures in the space of the original 64-dimensional DCT
vectors, and in the likelihood space. The X axis in the figure represents the log of the number of Gaussians
in the mixture Gaussian distributions used to model class distributions in the data space. The dotted line
represents classification accuracy obtained by a Bayesian classifier in the data space, and the solid line
represents classification accuracy in the corresponding likelihood space.

These results are as expected from our discussion in Section 2. When the projecting class
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distributions are suboptimal for classification, large gains are obtained by classifying in likelihood
space. The gains diminish as the projecting distributions become more optimal. In some cases,
classification in likelihood space is in fact less accurate than that in the data space. This is not
unexpected either, since only 16 training examples were available to estimate each pair-wise classifier
in the likelihood space, and hence the estimated classifiers did not generalize to the test data better
than the Bayesian classifier in data space. In general, however, the classification performance in
likelihood space is observed to be much more robust to variations in the class distributions than
the data-space Bayesian classifier based on those distributions.

While Figure 6 only demonstrates the robustness of classification in likelihood space to the
number of Gaussians in the mixture Gaussian class distributions, it was also found to be robust
to variations in the estimates of the distributions themselves. In our experiments, the expectation
maximization (EM) algorithm used to train the mixture Gaussians was observed to be rather sensi-
tive to the initial settings for the parameters, especially for mixtures with 512 or more components.
In order to estimate the distributions reliably, we estimated each mixture Gaussian density several
times, by restarting the EM algorithm with different initial values. The results in Figure 6 were
obtained with distributions that resulted in the highest likelihood for the training data.

Table 1 shows classification accuracies obtained with two different sets of mixture Gaussian
densities on one of the nine train/test partitions of the Brodatz textures. Since the test set here
consisted of only 112 images, the table reports the actual number of images correctly classified,
rather than percentage accuracy. The mixture densities in the first set, labelled “Gaussian mixture
1” in the table, were poorly trained, and resulted in poor classification in the data space. The sec-
ond set of densities, labelled “Gaussian mixture 2” in the table, were well trained and resulted in
significantly better classification than the first set. In both cases, better classification was achieved
in the likelihood space. More importantly, the classification performance in likelihood space was
almost identical for both sets of projecting distributions, the difference being statistically insignifi-
cant. Classification in likelihood space thus appears to compensate for the poor generalizability of
the distributions in Gaussian mixture 1.

Number of Gaussians in Mixture 512 | 1024 | 2048

Gaussian mixture 1 | Baseline Classification 91 70 54
Classification in Likelihood Space | 104 | 106 102

Gaussian mixture 2 | Baseline Classification 101 | 100 98
Classification in Likelihood Space | 103 | 103 103

Table 1: Number of Brodatz textures correctly classified using mixture Gaussian densities with
512, 1024, and 2048 mixture components. The test set has 112 texture images in all. The first
two rows, labelled as Gaussian mixture 1, show classification results obtained with poorly trained
mixture Gaussian densities that do not generalize well to the test data. The third and fourth rows,
labelled as Gaussian mixture 2, show classification results obtained with well-trained densities that
generalize well to the test data.
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3.2 Classification of Speech Sounds

We conducted experiments using the TIMIT speech database (Zue, Seneff and Glass, 1990) provided
by the Linguistic Data Consortium (LDC). TIMIT is a standard database used by speech researchers
for the development of signal processing and classification algorithms. The TIMIT corpus consists
of 5.38 hours of individually recorded spoken utterances, of which 3.94 hours have been designated
as training data, and 1.44 hours as test data. In this corpus the sounds in American English have
been categorized into 61 phonemes (or sound units) by linguistic experts. Phoneme boundaries
have been manually marked and provided with signals. The classes considered in our experiments
were obtained by grouping the 61 phonemes into ten sets, as listed in Table 2. Note that while the
names given to the sets are coincident with those provided with the TIMIT corpus, the composition
is not the one specified in the corpus. The names here are simply indicative of broad phonetic
characteristics of the elements of the sets.

Set Name | Phoneme Composition

affricates /ih/ [ch/

back /ih/ /eh/ Jae/ Jaa/ [ah/ [ao/
closures /kel/ /tel/ [pcl/ /gcl/ /pcl/ /bel/ /pau/ Jepi/ /h#/
diphthongs | /iy/ /ey/ [ay/ [aw/ [oy/

fricatives /s/ /sh/ /z/ [zh/ [t/ /th/ [v/ /dh/
nasals /m/ /n/ /ng/ /Jem/ [en/ [eng/ /nx/
round Jow/ Juw/ /ux/ /uh/

schwa /ix/ Jax/ [axr/ [ax-h/ [er/
semivowels | /1/ /r/ /w/ /y/ /hh/ /hv/ [el/
stops /b/ /4] /8] [v/ [t/ [%/ [/dx/ [/

Table 2: Listing of phoneme groupings to generate classes. Each entity enclosed in “/ /” represents
a phoneme.

For our experiments, each speech signal in the TIMIT corpus was first transformed into a se-
quence of feature vectors. For this, the signal was divided into segments, or frames, of 20ms, where
adjacent frames overlapped by 10 ms. Thus each second of speech yielded 100 frames. From each
frame a 40-dimensional Mel-frequency log-spectral vector was derived (Davis and Mermelstein,
1980). Each vector was further augmented by a 40-dimensional difference vector, computed as the
difference of the log-spectral vectors of the succeeding and preceding frame, and a 40-dimensional
double difference vector, computed as the difference between the difference vectors of the succeeding
and preceding frame. The final vector representing any frame of speech was thus 120 dimensional.
Note that Mel-frequency log-spectral representations derived in this manner, or their linear trans-
formations, have been empirically determined to be highly effective for classifying speech (Davis
and Mermelstein, 1980). There were 142910 phonetic segments comprising approximately 1.42 mil-
lion vectors in all available for training the ten classes, and 51681 phonetic segments comprising
approximately 0.5 million vectors in the test set.

The goal of the experiments was to classify each phonetic segment in the test data into one
of the ten classes (and not merely to classify individual frames). The joint evidence of all the
frames in a segment was used to classify it. For the purpose of this experiment, log-spectral vectors
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within any segment were assumed to be independent and identically distributed. The probability
distribution of the log-spectral vectors belonging to each sound class was modelled by a mixture
of Gaussians. Mixture Gaussian distributions are widely used to model the distributions of Mel-
frequency log-spectra and their linear derivatives for the purpose of classification of speech sounds
(Huang, Acero and Hon, 2001). Mixtures with 1, 2, 4, 8 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
and 8192 Gaussian components were computed for each of the classes, using the EM algorithm.
All Gaussians were assumed to have diagonal covariance matrices.

Classification in the data space was performed using the joint log likelihood of all frames within
a segment. The normalized joint log likelihoods of the classes were also used to project speech
segments into likelihood space. The normalization was performed by dividing the joint log likelihood
of the frames in a segment by the number of frames in the segment. This was necessary, since
different segments have different numbers of frames. Each segment was thus represented by a
single vector in likelihood space.

3.2.1 Discriminant-based Classifiers in Likelihood Space

In order to perform discriminant-based classification, linear discriminants were trained to classify
between each pair of classes using a least squares procedure (Duda et. al., 2000). A total of 45
linear discriminants were trained. Classification was performed using the voting mechanism based
on exhaustive pair-wise classification as suggested by Friedman (1996).
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Figure 7: Classification error on TIMIT data. (a) Classification error in the space of 120-dimensional
log-spectral vectors, and the likelihood spaces derived from it. (b) Classification error in the space of 9-
dimensional projections of log-spectral vectors, and the likelihood spaces derived from it. In both panels
the X axis represents the log of the number of Gaussians in the mixture Gaussian distributions used to
model class distributions in the data space. The dotted lines represents classification error rates obtained
by a Bayesian classifier in the data space, and the solid lines represents classification error rates in the
corresponding likelihood space.

Figure 7a shows classification error rates obtained on 120-dimensional log-spectral feature vec-
tors in the data and likelihood spaces. Classification in likelihood space is observed to be superior
to classification in data space, in all cases. The difference between the two is particularly large
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when the number of Gaussians in the projecting class distributions is either very small, or very
large. The best performance is obtained with mixtures of 1024 Gaussians. Even here, classification
in likelihood space is significantly superior to classification in data space.

Although the best performance is obtained with 1024 component Gaussian mixture class den-
sities, the fact that classification performance is better in the likelihood space, even with simple
linear discriminants, indicates that the estimated Gaussian mixtures do not optimally model class
densities in the 120-dimensional space. We therefore projected the 120-dimensional vectors down
into a 9-dimensional subspace using linear discriminant analysis (Duda et. al., 2000). Linear dis-
criminant analysis identifies sub-spaces within which the classes are most separated, and the lower
dimensionality of the space makes it simpler to estimate class distributions. Gaussian mixture class
distributions were trained for the 9-dimensional vectors and used both for Bayesian classification
and projection of segments into likelihood space.

Figure 7b shows classification performance on the 9-dimensional vectors. We observe that
classification performance on the 9-dimensional data is superior to that on the 120-dimensional
data, when the projecting Gaussian mixtures have a small number of Gaussian components. The
best performance is obtained with mixtures of 128 Gaussians. Again, classification in likelihood
space is consistently superior to classi- fication in the data space. Surprisingly, as the number of
Gaussians in the class distributions increases, classification in the 120-dimensional space is superior
to classification in the 9-dimensional space. The best segment level classification performance is
obtained for the 120-dimensional features, with mixtures of 1024 Gaussians. While we do not
speculate on the reason for these results, we point out that the lowest overall classification error
(28.2%) is obtained with likelihood projections of the 120-dimensional features.

3.2.2 Distribution-based Classifiers in Likelihood Space

A major distinction between distribution-based and discriminant-based classifiers lies in the fact
that while class distributions in distribution-based classifiers can be trained independently of one
another, discriminant-based classifiers are discriminatively trained, i.e. they are trained to explicitly
optimize some measure of the expected classification error, and must therefore consider all classes.
Thus, while the class distributions for the classifiers in our experiments were not discriminatively
trained, the classifiers in the likelihood space were discriminatively trained, and thereby optimized
for classification.

A question that arises naturally is whether the observed improved classification in likelihood
space is simply a consequence of the discriminative training of the classifiers in likelihood space, or
whether the projection into likelihood space makes it simpler to estimate good classifiers. To investi-
gate this, we evaluated the performance of distribution-based classifiers in the likelihood space. The
experiments were conducted on likelihood projections of the 120-dimensional log-spectral feature
vectors. In a preliminary diagonalization step, the likelihood vectors were rotated by multiplication
with the matrix of Eigen vectors of the overall covariance of the training set. Mixture Gaussian
class distributions were trained from the (rotated) likelihood vectors for each of the classes. In
every experiment all class distributions had an identical number of Gaussians. Likelihood-space
distributions were not discriminatively trained. As a result there was no discriminatively trained
component in the classifier.
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The results of the experiment are shown in Table 3. In this table, the first row shows clas-
sification errors obtained in the likelihood space, when the projecting class densities were single
Gaussians. The second row shows classification errors when the projecting densities were the ones
that resulted in the best classification in the data space, i.e. mixtures of 1024 Gaussians. The
first two columns of both rows of the table show the classification errors obtained in the data
space, and with linear discriminants in the likelihood space, respectively. Subsequent columns
show classification errors obtained with distribution-based classifiers in the likelihood space.

base. | discr. | 1Gau | 2Gau | 4Gau | 8Gau | 16Gau | 32Gau | 64Gau
1 Gau 48.2 38.0 41.3 40.8 39.1 37.7 36.9 35.7 35.5
1024 Gau | 30.1 28.2 33.7 31.2 30.0 29.1 29.1 28.8 29.1

Table 3: Percent classification errors obtained with distribution-based classifiers in likelihood spaces.
The two rows show classification errors obtained when projecting class distributions are single
Gaussians, and mixtures of 1024 Gaussians, respectively. The first column shows the baseline
Bayesian classification error in the data space. The second column shows the percent error obtained
with a discriminant-based classifier in the likelihood space. The remaining columns show errors
obtained with distribution-based classifiers in the likelihood space. The numbers in the heading rows
of the columns indicate the number of Gaussian components in the mixture Gaussian likelihood-
space class distributions.

We observe that classification with distribution-based classifiers in the likelihood space did in
fact improve significantly upon classification in the data space itself. In fact, when projecting
class distributions (in the data space) were single Gaussians, the best distribution based classifier
was observed to out-perform the discriminant-based classifier. Even when the projecting class
distributions were mixtures of 1024 Gaussians, the best distribution-based classifier in the likelihood
space performed significantly better than classification in data space, although the discriminant-
based classifier was better still. This suggests that there is inherent merit to the mapping performed
by likelihood projections themselves, that enables us to improve on the classification performance
obtained in the data space. In a follow-up experiment it was determined that classification in
a second likelihood space, obtained by utilizing the class densities in the likelihood space as a
projecting distributions, did not result in additional improvements, i.e there is no advantage to
recursively projecting data into newer likelihood spaces.

4 DISCUSSION AND CONCLUSIONS

As is evident from the experiments in Section 3, classification is likelihood space is very robust
to errors in the modelling and estimation of class distributions in the data space. Variations of
classification performance with changes in class distributions are much smaller in the likelihood
space than in the data space. The advantages to be derived from this fact are clear. It may
often be simpler to estimate a relatively crude set of class distributions and perform the final
classification in the likelihood space, than to search for the optimal set of class distributions. In
many situations, the computational requirements of the classifier are important. The combined
computational requirement of a likelihood projection using simple models for class distributions,
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followed by a simple classifier in likelihood space, may be significantly lower than that of a more
complicated classifier in data space, while providing the same performance.

For the most part, in our experiments we have restricted the explored classifiers to linear dis-
criminants, since our goal was only to demonstrate that better classification is possible in likelihood
spaces, rather than to obtain the best classifier for the data considered. One advantage with linear
discriminants is that the optimal Bayesian classifier in the data space is also a linear discriminant
in the likelihood space. Thus any search for an optimal linear discriminant in the likelihood space
will also consider this classifier. This ensures that the classifier in the likelihood space does not
perform worse than the one in the data space, at least on the training data. However, better
classification performance may be possible through the use of other discriminant functions such as
quadratic discriminants (Gupta, Riley and White, 1986) or logistic regressors (Darlington, 1990).
Also, discriminant-based multi-class classification has been performed by the combination of binary
classifiers using the voting mechanism of Friedman (1996). Several other methods have been pro-
posed such as the use of cyclic redundancy codes (Dietterich and Bakiri, 1995), pair-wise coupling
(Hastie and Tibshirani, 1998) etc., which might result in better performance.

In this paper we have only considered log likelihoods as projections. However, much of the
discussion in this paper would also apply if we were to use the logarithm of estimated a posteriori
class probabilities as projections. This is because likelihoods and a posteriori class probabilities are
related - the former are just a scaled version of the latter. As mentioned in Section 1, a posteriori
probability based projections have been used earlier in speech recognition systems, and have been
found to result in greatly improved recognition performance, as compared to recognition using the
data vectors (Hermansky et. al., 2000).

The logarithm that we have used in the likelihood projections is an important component
of these projections. Most data points have very low likelihoods for at least one of the classes.
Consequently any density-based projection that does not incorporate the logarithm projects most of
the data points into regions that are very close to one of the axes, making it difficult to obtain simple
discriminants for the data. The logarithm function tends to expand this region out, simplifying the
problem. Figure 8 illustrates this pictorially. Other functions with similar properties could have
also been used instead of the logarithm.

While we have found distribution-based classifiers in the likelihood space to be effective, they
may be difficult to estimate when the number of classes in the likelihood projection, and thereby the
dimensionality of the likelihood space, is greater than the dimensionality of the data space. In such
situations data vectors are projected onto manifolds of the same dimensionality as the data space,
within the likelihood space (Conlon, 1993). Figure 3 shows such an example, where one-dimensional
data are projected onto a one-dimensional manifold in two-dimensional space. In such situations,
the likelihood space is largely empty. This makes the use of continuous densities difficult, since they
would also attempt to account for data in the empty regions of the space. In order to avoid this
problem, it may be advantageous to unwrap the manifold into a lower dimensional Euclidean space
using methods such as charting (Brand, 2002), prior to clas- sification. This hypothesis remains to
be evaluated.

Finally, we note from the TIMIT experiments in Section 3.2.2 that for segment level clas-
sification, distribution-based classifiers in the likelihood space derived from the 120-dimensional
log-spectral vectors are far more effective than distribution-based classifiers in the 9-dimensional
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Figure 8: Scatter of density values of data shown in Figure 1, measured using the densities of two classes.
This must be compared to the scatter of log-likelihood values shown in Figure 1.

space derived by linear discriminant analysis of the 120-dimensional space. Both linear discriminant
analysis and likelihood projections project the 120-dimensional data into a lower dimensional space;
however, the likelihood projection has the added advantage of gathering class data from potentially
disconnected regions into convex regions. It is not clear whether the superior performance obtained
with likelihood projections is entirely due to this reason, or if this result will hold up on other data.
Further experiments are needed to resolve this question.
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