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Abstract

This paper proposes a statistical mapping-based technique
for guessing pronunciations of novel words from their spellings.
The technique is based on the automatic determination and uti-
lization of unidirectional mappings betweenn-tuples of charac-
ters andn-tuples of phonemes, and may be viewed as a statis-
tical extension of analogy-based pronunciation guessing algo-
rithms.

1. Introduction
A commonly encountered problem in the deployment of
speech-based user interfaces is that ofgrapheme to phoneme
(G2P) conversion, i.e., guessing the pronunciations of novel
words from their spellings. This is an important problem both
for text-to-speech conversion systems that must guess the cor-
rect pronunciations of words in order to synthesize them, and
speech-to-text systems that must know how a word is pro-
nounced in order to be able to recognize it.

Arguably the most informed approach to determining the
pronunciation of a word is from acoustic realizations of it, e.g.
[1]. Given a number of recorded utterances of the word and
a number of candidate pronunciations for it, the most likely of
these pronunciations is determined using a speech recognizer.
However, acoustic realizations are often not available and the
pronunciations must be guessed from the orthography – the
spellings of the words alone. Even when acoustic realizations
are available, spelling-to-pronunciation conversion mechanisms
may be required to generate the candidate pronunciations to be
evaluated.

A large number of techniques have been proposed in the lit-
erature for the determination of pronunciations from spellings.
The simplest approach derives the pronunciation of a word from
(parts of) other words with known pronunciation that are spelt
analogously to the target word [2]. Other techniques derive
pronunciations from expert-enumerated rules that relate them
to spellings, e.g. [3, 4]. Decision-tree based G2P conversion
systems attempt to derive such rules automatically from pro-
nunciation dictionaries that are presented as training data [5].
Some authors have also attempted to formalize the inference
task performed by the decision trees through statistical mod-
els that explicitly represent the branching rules within the trees
as functions in an exponential probability model [6]. Neural
network based G2P methods represent the relationship between
spellings of words and their pronunciations through a neural
network, whose parameters are learnt from training data [7].

Statistical pronunciation guessing algorithms typically at-
tempt to capture the sequential dependencies in spellings and
pronunciations through appropriate statistical models. HMM-
based techniques have long been particularly popular. These

methods usually represent the orthography for a word as the
output of an HMM, whose underlying state sequence represents
the phoneme sequence for the word [8]. Lexical dependencies
between the phonemes themselves may be formalized through
the manner in which the HMMs for phonemes are linked to-
gether [9].

Joint multi-gram techniques such as [10, 11] model the joint
distribution of spellings and pronunciations with an N-gram
model. Each spelling-pronunciation pair is assumed to consist
of a sequence of unit pairs, where each unit pair includes one
symbol unit from the spelling and one from the pronunciation.
The symbol units themselves do not merely comprise individ-
ual characters or phonemes, but rathersequencesof them. Since
the number of characters in a spelling are often different from
the number of phonemes in the pronunciation, alignments be-
tween the spelling and pronunciation are estimated such that
each character/phoneme maps onto a sequence of one or more
phonemes/characters. A unit pair thus consists of either one
character and an associated group of phonemes orvice versa.
The probabilities of unit pairs are represented through an N-
gram model. Since spellings and pronunciations are treated
symmetrically, the N-gram model may be used either to derive
a pronunciation given a spelling orvice versa.

In this paper we present a statistical symbol-mapping ap-
proach to G2P conversion that is based on the automatic de-
termination and utilization of mappings between sequences (or
n-tuples) of characters in the spelling and sequences (orn-
tuples) of phonemes in the pronunciation. Mechanically, the
proposed technique may hence be viewed as a statistical ex-
tension of analogy-based mapping [2]. However, the technique
may also be viewed as a generalization of HMM-based G2P
methods such as [8], since sequences of phonemen-tuples are
assumed to be generated by a Markovian process, and these in
turn are assumed to generate spellingn-tuples. As in HMM-
based methods, all parameters of this generative process are
learned from a training pronunciation dictionary. The tech-
nique may also be related to joint multi-gram methods, the
chief difference being that we modeln-tuples, rather than N-
grams. Also, the proposed method is not bi-directional; rather
one symbol sequence is assumed to generate the other. Un-
like multi-gram methods that depend on back-off mechanisms
to control overparametrization, there is no explicit back-off in
our scheme. Rather, back-off is implicit in that mappings are
learnt forn-tuples of all orders (up to a predeterminedn). Also,
unlike multi-gram methods, at no point is it necessary to explic-
itly compute alignments between spellings and pronunciations
– mappings are learned through an EM algorithm that considers
all possible mappings.

Experimental evaluation using the CMU dict shows that the
proposed method is able to learn mappings effectively and gen-



erate pronunciations of higher accuracy than two standard pro-
nunciation guessing algorithms. Resulting pronunciation dic-
tionaries are also found to result in speech recognition accura-
cies that are better than those obtained with the other two tech-
niques.

The rest of the paper is arranged as follows. In Section 2
we describe our statistical model and the learning algorithm to
obtain its parameters. In Section 3 we describe how the learned
parameters may be used to obtain the pronunciation for a novel
word. In Section 4 we report our experiments, and finally in
Section 5 we present our conclusions.

2. Probabilistic Mapping between Symbol
Sequences

We treat the phoneme set as a set of symbols or analphabet.
Similarly, the characters used in the orthography of words rep-
resent a second alphabet. Dictionary words and their pronun-
ciations are assumed to be the output of a common generator
which produces output symbol sequences from the two differ-
ent alphabets. We aim to find the underlying rules that relate
one output sequence to the other. We assume that the underly-
ing rules exist, are probabilistic and can be described in terms of
probabilities ofmappingsbetween sequences of symbols from
the two alphabets.

Consider two symbol sets{X} and{Y} respectively. They
may be composed of different alphabets and may be of different
sizes. Consider the case where a common input orgenerator
independently generates output symbol strings from each set.
Let these output symbol strings be denoted byxixjxk... and
yiyjyk... respectively. These may be of different lengths. We
define any sequence ofn symbols to be ann-tuple. We define
a substringto be a segment of a complete output string. We
assume, based on the presence of the common generator, that
there existmappingsbetween substrings (orn-tuples) of the two
output symbol strings of the kind

xi 7→ yi xi 7→ yiyj

xi 7→ yiyjyk xixj 7→ yi

xixj 7→ yiyj xixj 7→ yiyjyk

xixjxk 7→ yi xixjxk 7→ yiyj

xixjxk 7→ yiyjyk · · ·

We define amapping orderof N1,N2 as one where mappings
are defined for substrings of up toN1 symbols from{X} and
substrings of up toN2 symbols from{Y}. The symbol7→ de-
notes an onto mapping. We make the following assumptions
about the mappings:

1. The mappings are of a definite orderN1,N2, that is
known. In practice, this order must be assumed.

2. Forward and reverse mappings are distinct. Thus, for
a mapping of orderN1, N2, the forward mappings map
n-tuples of order up toN1 from {X} on ton-tuples of
order up toN2 from {Y}, while the reverse mappings
mapn-tuples of order up toN2 from {Y} on ton-tuples
of order up toN1 from {X}. The mappings are directed,
i.e., the mappingxixj 7→ yiyjyk is not identical to the
mappingyiyjyk 7→ xixj .

3. Mappings are not reducible, i.e. ifx1x2x3 7→ y1y2 and
x1x2 7→ y1, it does not imply thatx3 7→ y2.

4. Both alphabets include abeginand anendsymbol that
identify the beginning and ending of every symbol se-
quence. Thebeginsymbol from one alphabet by itself

only maps on to thebeginsymbol from the other alpha-
bet. Similarly, by themselves the twoendsymbols only
map on to one another. Substrings from one alphabet that
include thebeginsymbol may only map onto substrings
from the other alphabet that also include thebeginsym-
bol. Likewise for theendsymbol.

5. The mappings are probabilistic,i.e.,

yi yj ... 7→ xi with P(yi yj ... 7→ xi) ∀ i,j
xi xj with P(yi yj ... 7→ xi xj) ∀ i,j
...

P (x1x2x3 7→ y1y2) need not be equal toP (y1y2 7→
x1x2x3).

The various mapping probabilities may now be computed
from a set of instances of parallel symbol sequences from both
alphabets. In order to deduce the mappings, we begin by creat-
ing a symbol set{H} consisting ofall n-tuples up to orderN1

from {X}, and a symbol set{K} consisting of all n-tuples up to
orderN2 from {Y}:

hi ∈ {H} = the sequencexi..xj of lengthn : n ≤ N1 ∀ i, j

ki ∈ {K} = the sequenceyi..yj of lengthn : n ≤ N2 ∀ i, j

Note that for anyN1 > 1, there are multiple sequences of
n-tuples from{H} that map onto a given symbol sequence
x1x2 . . . We assume that thea priori probability of ann-
tuple sequenceh1h2 . . . is given by the Markovian model
P (h1)P (h2|h1)P (h3|h2) . . . The terms to be estimated are
now the probabilities of the mappingsP (hi 7→ kj) and the
transition probabilitiesP (hi|hj).

Given a symbol sequenceX from {X} and a corresponding
symbol sequenceY from {Y}, we first identify the set of all
n-tupleshi in X , and alln-tupleskj in Y. The set of validn-
tuple sequences is restricted not only by the fact that they must
composeX , but also by the fact that they must map onto a cor-
respondingn-tuple sequence that composesY. This restriction
can be represented by a graph as illustrated by Figure 2.

Each pathθ in the graph represents the event that a specific
n-tuple sequencehahbhc . . . maps onto a specificn-tuple se-
quencekakbkc . . . of the same length. The likelihood of the
pathθ is given by

P (θ) = P (ha 7→ ka)P (hb 7→ kb) . . . P (hn 7→ kn)
P (ha)P (hb|ha) . . . P (hn|hm)

(1)

The total likelihood that the symbol sequenceX maps onto the
sequenceY is the sum of the likelihood of all paths through the
graph:

P (X 7→ Y) =
X

θ

P (θ) (2)

.
Each node in the graph corresponds to the mapping of a

specificn-tuplehi (on theX-axis) onto ann-tupleki (on the
Y axis). The probability thathi maps ontokj in the process of
mappingX onto theY, P (hi, kj ,X ,Y) is the sum of all the
likelihood of all paths in the graph that pass through the node(s)
that maphi onto kj and can be computed using a forward-
backward algorithm. Similarly,P (hj , hi,X ,Y), the total prob-
ability of all paths that step through then-tuplehj immediately
after then-tuple hi can also be computed from the forward-
backward algorithm.

The process of estimating mapping and transition probabil-
ities is now simple: given a set of symbol sequences{X} from
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Figure 1: Valid mapping paths for the stringstuvw 7→ efgh, on
a graph. The vertical columns refer toN1-tuples constructed
from the alphabet in{X}. Each of these is an element of{H}.
The horizontal column consists ofN2-tuples constructed from
the alphabet in{Y}. Each of these is an element of the set{K}.

{X} and a corresponding set of sequences{Y} from {Y}, we
obtain the following iterative update rules for the mapping and
transition probabilities through the EM algorithm:

P
n+1(kj |hi) =

P

X∈{X}Y∈{Y} P n(kj ,hi,X ,Y)
P

k
′
j

P

X∈{X}Y∈{Y} P n(k
′
j
,hi,X ,Y)

(3)

P
n+1(hj |hi) =

P

X∈{X}Y∈{Y} P n(hj ,hi,X ,Y)
P

h
′
j

P

X∈{X}Y∈{Y} P n(h
′
j
,hi,X ,Y)

(4)

where the superscriptn + 1 refers to estimates obtained in the
n + 1th iteration of the algorithm, and the superscriptn repre-
sents probabilities computed from thenth iteration of transition
and mapping probability estimates. Equations (3) and (4) are it-
erated until the combined probabilities of all graphs constructed
from allX ,Y pairs in the training set converge.

3. Generating sequences from {Y } given
sequences from {X}

Once the parameters of the statistical model relating{X} to{Y}

are learnt they can be used to estimate the unknown sequenceŶ
of symbols from{Y} that best corresponds to a given sequence
X of symbols from{X}. We estimateŶ as the most likely
sequence for the givenX .

Ŷ = argmaxYP (Y|X ) (5)

For any givenY, P (Y|X ) can be computed from the graph that
represents the mapping of the componentn-tuples ofX onto
the n-tuples ofY using Equation 2. This would however be
an extremely expensive calculation, since the entire forward-
backward procedure must be followed for everyY in order to
identify the most likely one.

To simply the procedure, instead we jointly identify the
most likelyn-tuple sequencesH (that composesX andK (de-
rived from{K}, the set of all possiblen-tuples from the sym-
bols in{X}), givenX .

K̂ = argmaxH,KP (H 7→ K|X ) (6)

This can be computed very simply using the Viterbi algorithm
over a graph such as the one in Figure 3. TheX-axis on this
graph comprises alln-tuples that can be obtained fromX . The
Y -axis comprises alln-tuples in{K}. Any valid path through
the graph must represent a valid sequence ofn-tuples along the
X-axis (i.e. that represents a tokenization ofX ). K̂ is then-
tuple sequence corresponding to the most likely path through
this graph. The symbol sequenceŶ underlyingK̂ becomes our
best guess forY.

We note here that since the procedure is ML, the best esti-
mate for then-tuplek associated with ann-tupleh is always the
one that has the highestP (k|h) value, i.e. the mapping of any
h to ak now becomes deterministic. Therefore, the problem of
identifying the most likelyn-tuple sequenceK simply reduces
to that of finding the best segmentation of the givenX into ann-
tuple sequence. However, in the Viterbi procedure theP (k|h)
terms do have an effect on the outcome:n-tuples for which
maxk P (k|h) values are low are de-weighted with respect to
n-tuples with highmaxk P (k|h) values. In other words, the al-
gorithm preferentially selectsn-tuple segmentations where the
mappings of then-tuples are more certain.

The G2P problem can now be simply stated in terms of the
above mathematics: the spellings of words are assumed to rep-
resent sequences from the character set{X} and their pronunci-
ations the corresponding sequences from the phoneme set{Y}.
Mappings of charactern-tuples to phonemen-tuples are learnt
using the procedure outlined in Section 2 from a training dictio-
nary. Thereafter, the pronunciations of new words are derived
from their spelling using the procedure in Section 3.
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Figure 2: A few paths on a graph used for estimating an un-
known Y given a stringX = efgh. Y could in principle be
composed of any n-tuple sequence from{K}. In this example
the elements of{K} are all the n-tuples up toN2 that can possi-
bly be composed from of the alphabet of{Y}, which is specified
here to be{ t,u,v,w}. The abscissa has only those symbols from
{H} which correspond toX . The ordinate has all symbols from
{K}. The mapping ordersN1 andN2 are assumed to be 2.

4. Experimental results
We conducted two experiments to compare the proposed G2P
algorithm. The CMU dictionary has 130,000 entries repre-
sented by a 50-symbol phone set. We learned order 4,3 map-



Table 1: Phoneme error in guessed pronunciations.
Algorithm ADDTTP LTS Symbol Map
Phone error (%) 22.5 28.5 18.8

Table 2: Recognition error with manually-crafted and automat-
ically generated dictionaries.

Algorithm Manual ADDTTP LTS Sym. Map
Word err. (%) 9.7 30.7 35.9 24.8

ping probabilities from 70,000 randomly selected entries. We
then generated the pronunciations for the remaining 60,000 en-
tries using the algorithm of Section 3. As a comparison, we
also computed pronunciations using two other tools, the NIST
addttp package that utilizes a combination of N-gram probabil-
ities and decision-tree like rules to generate pronunciations [12]
and the CMU LTS decision-tree-based pronunciation guessing
tool that is included as part of the CMU SphinxTrain toolkit
[13]. The NIST addttp package is trained on word pronunci-
ations obtained from a variety of sources including the CMU-
dict. We trained the LTS package on the same subset of the
CMUdict that our mapping probabilities were also trained on.
We report thephone errorobtained with each of the three tech-
niques on our test set in table 1. The phone error represents
the percentage of phonemes in the manually tagged pronunci-
ations of the words in the test set that were correctly captured
by the G2P algorithm. It is clear from the table that the pro-
posed symbol map technique clearly outperforms the other two
methods. CMUdict has been noted to have several erroneous
or inconsistent pronunciations. The results in table 1 compare
the pronunciations obtained with the G2P algorithms against the
pronunciation given in the dictionary. It is entirely possible that
in at least a few cases the pronunciation returned by the algo-
rithms is, in fact,betterthan the one in the dictionary, although
a direct comparison between the two would label it as an error.
In order to eliminate this possibility, we also ran a recognition
test. In this test we attempted to recognize proper names. The
test data were obtained from www.talkhouse.com and consisted
of 1075 recordings from over 30 speakers uttering combinations
of various song titles, artist names, etc. Not unusually for song
titles and artist names, several of the words were oddly spelt,
potentially making them difficult to guess pronunciations for.
None of the names were in the CMUdict. Four separate dictio-
naries were used in the experiment – a hand-crafted dictionary,
and dictionaries produced by ADDTTP, LTS and the proposed
symbol-mapping algorithm. Both LTS and the mapping proba-
bilities for the symbol-mapping algorithm were learnt from the
entire CMUdict. The acoustic models were fully continuous
HMMs trained from other data also obtained from Talkhouse.
A bigram LM was trained from a large collection of song ti-
tles, album names etc., including those in the test data. Table 2
shows the results obtained with the four dictionaries. Not unex-
pectedly (given the difficulty of guessing the pronunciations of
song titles and artist names), by far the best recognition accura-
cies are still obtained with the manually crafted dictionary. Of
the automatically obtained dictionaries, the one obtained with
the symbol-mapping algorithm results in the best recognition
performance, while the other two are significantly worse.

5. Discussion and Conclusion
As a result of the MAP approach taken in Section 3, the symbol
mapping algorithm is primarily a statistical extension of anal-
ogy based G2P algorithms. As a result, the pronunciations gen-
erated can sometimes be egregious, for instance the pronuncia-

tion for the word ”ABC” was guessed to be ”AE B K”, while
both the addttp and lts algorithms correctly identified it as ”EY
B IY S IY”. A large reason for this is that the algorithm in its
current form does not utilize constraints on phoneme sequences.
Better performance may be obtained by inverting the mapping
procedure, describing the spelling as the output of a Markovian
chain of pronunciations. The current implementation also relies
heavily on implicit back-off – if some of the potentialn-tuples
in a sequence have zero probability due to not having been ob-
served during training, the sequence is described in terms of
shortern-tuples for which probabilities are known. Better per-
formance may be obtained by smoothing all transition probabil-
ities and applying explicit back-off policies. Finally, the current
implementation expects the order of mapping to be strictly left
to right – a latern-tuple fromX will perforce map onto a later
n-tuple fromY. This is not mandatory – by permitting arbitrary
transitions over then-tuple components ofY, we can permit
correspondingn-tuples ofX andY to be differently arranged,
such as may be encountered when translating between words in
languages. These issues will be explored in future work.

6. References
[1] G. K. Anumanchipalli, M. Ravishankar, and R. Reddy,

“Acoustic-based improving pronunciation inference using
n-best list, acoustics and orthography,” inProc. ICASSP,
2007.

[2] R. Damper, Y. Marchand, M. Adamson, and K. Gustafson,
“Comparative evaluation of letter-to-sound conversion
techniques for English text-to-speech synthesis,” inProc.
SSW-3, 1998, pp. 53–58.

[3] H. M. Meng, S. Seneff, and V. W. Zue, “The use of higher
level linguistic knowledge for spelling-to-pronunciation
generation,” inProc. ISSIPNN, vol. 2, 1994, pp. 670–673.

[4] M. Ravishankar and M. Eskenazi, “Automatic genera-
tion of context-dependent pronunciations,” inProc. Eu-
rospeech, vol. 5, 1997, pp. 2467–2470.

[5] A. W. Black, K. Lenzo, and V. Pagel, “Issues in building
general letter to sound rules,” inProc. SSW-3, 1998, pp.
77–80.

[6] S. F. Chen, “Conditional and joint models for grapheme-
to-phoneme conversion,” inProc. Eurospeech, 2003, pp.
2033–2036.

[7] N. Deshmukh, J. Ngan, J. Hamaker, and J. Picone, “An
advanced system to generate pronunciations of proper
nouns,” inProc. ICASSP, vol. 1, 1997, pp. 1467–1470.

[8] F. Jelinek, Statistical Methods for Speech Recognition.
MIT Press, 1997.

[9] P. Taylor, “Hidden markov models for grapheme to
phoneme conversion,” inProc. Eurospeech, 2005, pp.
1973–1976.

[10] L. Galescu and J. F. Allen, “Bi-directional conversion
between graphemes and phonemes using a joint n-gram
model,” inProc. 4th ITRW on Speech Synthesis, 2001.

[11] M. Bisani and H. Ney, “Investigations on joint-multigram
models for grapheme-to-phoneme conversion,” inProc.
ICSLP, vol. 1, 2002, pp. 105–108.

[12] W. M. Fisher, “A statistical text-to-phone function using
ngrams and rules,” inProc. ICASSP, 1999, pp. 649–652.

[13] [Online]. Available: http://cmusphinx.org/tutorial.html


