Secure Binary Embeddings for Privacy Preserving Nearest Neighbors

- contributions of paper
 - a scheme for privacy preserving nearest neighbor search based on a secure stable embedding using quantized random projections
 - show how to use this scheme by presenting protocols for clustering and authentication applications

- quantization process
 - $x \in \mathbb{R}^K$, $y_m = \langle x, a_m \rangle + w_m$, $q_m = Q \left(\frac{y_m}{\Delta_m} \right)$
 - x: K-dimensional signal
 - $m = 1, \ldots, M$: measurement index
 - y_m: unquantized measurements
 - a_m: measurement vectors
 - w_m: additive dither
 - Δ_m: quantization precision parameters
 - $Q(\cdot)$: quantizer

- universal quantization
 - scalar quantizer with non-contiguous quantization regions
 - determine an upper bound for the probability that there exist two signals x and x' with distance greater than d that quantize to the same quantization vector given the number of measurements M
 - $P(q = q') = P(x, x' \text{ consistent}|d) = \frac{1}{2} + \sum_{i=0}^{+\infty} \frac{e^{-\left(\frac{\pi(2i+1)\sigma d}{\sqrt{2} \Delta}\right)^2}}{(\pi(i + 1/2))^2}$
 - $P(q = q') = P(x, x' \text{ consistent}|d) \leq \frac{1}{2} + \frac{1}{2} e^{-\left(\frac{\pi \sigma d\Delta}{\sqrt{2} \Delta}\right)}$
 - $d = \|x - x'\|_2$, $q = Q \left(\frac{\langle x, a \rangle + w}{\Delta} \right)$, $q' = Q \left(\frac{\langle x', a \rangle + w}{\Delta} \right)$
 - a: drawn from a normal distribution mean 0 and variance σ^2
 - w: uniformly distributed in $[0, \Delta]$
secure binary embeddings

- the quantization process used as an embedding has similar properties to Locality Sensitive Hashing (LSH)
- information-theoretic security:

\[
I(q_i; q'_i|d) = \sum_{q_i, q'_i \in \{0, 1\}} P(q_i, q'_i|d) \log \frac{P(q_i, q'_i|d)}{P(q_i|d)P(q'_i|d)}
\]

\[
I(q; q'|d) \leq 10Me^{-\left(\frac{\pi \sigma d}{\Delta}\right)^2}
\]

- stable embedding:

provide a relationship between the distance of the signals and the distance of their quantized measurements

binary space: \(\{0, 1\}^M \rightarrow \) Hamming distance:

\[
d_H(q, q') = \frac{1}{M} \sum_m (q_m \oplus q'_m)
\]

with probability

\[
1 - 2e^{2\log L - 2d^2M}, 1 - P_{c|d} - t \leq d_H(q, q') \leq 1 - P_{c|d} + t
\]

- \(L\): number of points to be embedded securely
- \(P_{c|d}\): shorthand for \(P(x, x' \text{ consistent}|d)\)
- \(t\): control variable
• applications
 – privacy preserving clustering with a star topology
 – authentication using symmetric keys
 – privacy preserving clustering with two parties
Information Retrieval Methods for Automatic Speech Recognition

- introduction
 - use n-gram features extracted from phonetic recognition, multi-phone recognition and word recognition
 - using IR for mapping acoustic features to word sequences provides a more flexible pronunciation model
 - the vector space model used in IR has no sequencing constraints, which leads to robustness against disfluencies and noise

- proposed speech recognition method

 ![Speech recognition using IR diagram](image)

 Figure 3: Speech recognition using IR.

 - recognition task
 * map the audio into a sequence of acoustic units
 * increasing the size of acoustic units (phone → multi-phone → word) leads to a decrease in the phonetic error rate, although at the cost of more complex models and the remaining errors are more difficult to correct
 * decreasing the size of acoustic units leads to an increase in the phonetic error rate, but the IR engine may have a good chance to recover from errors as long as enough phones are correctly recognized

 - feature extraction task
 * use the acoustic units to produce features useful for the task
 * bigram unit features:
 the complete set of bigrams is not large
 the bigrams contain more sequencing information than the unigrams
 they are more robust to recognition errors than longer units
 * maximum mutual information n-gram unit features:
 computed for units where a sufficient amount of data is available
IR scoring task

* vector space model based scoring:
 vectors consist of weights calculated from the training data
 \[
 \cos(v_q, v_d) = \frac{\sum_k v_{qk} v_{dk}}{|v_q| |v_d|}, \quad v_q: \text{testing query}, \ v_d: \text{training document}
 \]
 TF-IDF: \(v_{jk} = \frac{f_{jk}}{m_j} \left(1 + \log_2 \left(\frac{n}{n_k} \right) \right), \ j = q, d \)
 document \(\hat{i} = \arg \max_i \cos(v_q, r_i) \)
 discriminative training: use minimal classification error criterion

* language model based scoring:
 document \(\hat{d} = \arg \max_d P(d|q) = \arg \max_d P(q|d)P(d) \)