Secure Binary Embeddings for Privacy Preserving Nearest Neighbors

- contributions of paper
 - a scheme for privacy preserving nearest neighbor search based on a secure stable embedding using quantized random projections
 - show how to use this scheme by presenting protocols for clustering and authentication applications

- quantization process
 - \(x \in \mathbb{R}^K, \ y_m = \langle x, a_m \rangle + w_m, \ q_m = Q\left(\frac{y_m}{\Delta_m}\right) \rightarrow q = Q(\Delta^{-1}(Ax + w)) \)
 - \(x \): \(K \)-dimensional signal
 - \(m = 1, \ldots, M \): measurement index
 - \(y_m \): unquantized measurements
 - \(a_m \): measurement vectors \(\rightarrow A \): random matrix i.i.d., \(\mathcal{N}(\mu = 0, \sigma^2) \)
 - \(w_m \): additive dither (noise), uniformly distributed in \([0, \Delta]\)
 - \(\Delta_m \): quantization precision parameters \(\rightarrow \Delta \): diagonal matrix
 - \(Q(\cdot) \): quantizer

- universal quantization
 - scalar quantizer with non-contiguous quantization regions
 - determine an upper bound for the probability that there exist two signals \(x \) and \(x' \) with distance greater than \(d \) that quantize to the same quantization vector given the number of measurements \(M \)

\[P(q = q') = P(x, x' \text{ consistent} | d) = \frac{1}{2} + \sum_{i=0}^{\infty} \frac{e^{-\left(\frac{\pi(2i+1)\pi d}{\sqrt{2}\Delta}\right)^2}}{(\pi(i+1/2))^2} \] (Figure 3)

\[P(q = q') = P(x, x' \text{ consistent} | d) \leq \frac{1}{2} + \frac{1}{2} e^{-\left(\frac{\pi d}{\sqrt{2}\Delta}\right)^2} \]

\[\geq 1 - \sqrt{\frac{2}{\pi}} \cdot \frac{\sigma d}{\Delta} \]
\[\geq 1 - \sqrt{\frac{2}{\pi}} \cdot \frac{\sigma d}{\Delta} \]
\[\geq 1 + \frac{4}{\pi^2} e^{-\left(\frac{\pi d}{\sqrt{2}\Delta}\right)^2} \]

\[d = \|x - x'\|_2, \ q = Q\left(\frac{\langle x, a \rangle + w}{\Delta}\right), \ q' = Q\left(\frac{\langle x', a \rangle + w}{\Delta}\right) \]
• secure binary embeddings
 – the quantization process used as an embedding has similar properties to Locality Sensitive Hashing (LSH)
 – information-theoretic security:
 \[I(q_i; q'_i|d) = \sum_{q_i, q'_i \in \{0, 1\}} P(q_i, q'_i|d) \log \frac{P(q_i, q'_i|d)}{P(q_i|d)P(q'_i|d)} \leq 10e^{-\left(\frac{\pi \sigma d}{\sqrt{2}}\right)^2} \] (Figure 4)
 \[I(q; q'|d) \leq 10Me^{-\left(\frac{\pi \sigma d}{\sqrt{2}}\right)^2} \]

 \(d < \Delta \): the distance between the quantized measurements provides information about the distance between the signals
 \(d > \Delta \): we cannot recover any information just by observing the quantized measurements

 – stable embedding:
 provide a relationship between the distance of the signals and the distance of their quantized measurements
 binary space: \(\{0, 1\}^M \rightarrow \) Hamming distance: \(d_H(q, q') = \frac{1}{M} \sum_m (q_m \oplus q'_m) \)
 with probability \(1 - 2e^{2\log L - 2d^2M}, 1 - P_{cl(d)} - t \leq d_H(q, q') \leq 1 - P_{cl(d)} + t \)
 \(L \): number of points to be embedded securely
 \(P_{cl(d)} \): shorthand for \(P(x, x' \text{ consistent}|d) \)
 \(t \): control variable

• applications
 – privacy preserving clustering with a star topology
 – authentication using symmetric keys
 – privacy preserving clustering with two parties
Figure 1: Scalar quantization.

Figure 2: Universal quantization.
Figure 3: Probability of equal bits, $P(q_i = q'_i)$.

Figure 4: Cross-bit information, $I(q_i, q'_i | d)$.