PRIVACY-PRESERVING MUSICAL DATABASE MATCHING
Madhusudana Shashanka, Paris Smaragdis
--

ABSTRACT
Match a piece of music audio to a service database using a privacy preserving process for both sides

INTRODUCTION
Secure Multi-party Communication (SMC) protocols
- allow multiple parties to perform arbitrary collaborative computations while guaranteeing the privacy of their data
- originated from the millionaire problem
- machine learning community: performing k-means, computation of means and related statistics from distributed databases, computer vision applications

PROBLEM FORMULATION
Solution with no privacy issues: Alice sends a piece of audio information x to Bob, Bob computes the cross-correlation c_k between x and all the songs y_k in his database, Bob sends all the cross-correlations to Alice, Alice gets the index k of the maximum value of all the c_k, Alice accesses the database using k to find her song information

BACKGROUND
Secure two-party computation
A protocol that implements an algorithm to calculate $c=f(a,b)$ is said to be secure only if it leaks no more information about a and b than what one could gain from learning c from a trusted third-party.

General strategy to create a secure version of the algorithm
- express every step in terms of basic operations for which secure implementations are already known
- distribute intermediate results randomly between the two parties (e.g. random additive shares z_1 and z_2 such that $z=z_1+z_2$ is the intermediate result)

Homomorphic public-key cryptosystem
A public-key cryptosystem is a set of probabilistic polynomial-time algorithms for key generation (sk,pk), encryption (pk) and decryption (sk); pk: public key, sk: private key.
A cryptosystem is called homomorphic if one can indirectly perform specific algebraic operations on the encrypted data by manipulating the cyphertext. In this case, $EN(a,pk) * EN(b,pk) = EN(a+b,pk)$.
SECURE MUSIC COMPARISON

Step 1: Cross-correlating the music signals
Use the fact that cross-correlation is a sliding inner-product

Alice: \(GE(pk, sk) \rightarrow e_t = EN(x_t, pk), \ t = 1, \ldots, T \)
send \(pk \) and all \(e_t \) to Bob

Bob: \(z_n = \prod_t e_t \cdot y_k \cdot EN(c_k, pk), \ z_n' = z_n \cdot EN(-b_k, pk), \ b_k \) random
send all \(z_n' \) to Alice

Alice: \(ak_n = DE(z_n', sk) = c_k_n - b_k_n \rightarrow \) random additive shares \(c_k = ak + bk \)

Step 2: Obtaining the cross-correlation peaks
\(c_k = ak + bk \rightarrow c_k \succeq c_j \Leftrightarrow (ak_i - ak_j) \geq (bk_i - bk_j) \)

Yao's solution to the millionaire problem:
Alice has \(i \), Bob has \(j \), \(1 < i, j < 10 \), decide whether \(i < j \)
M: set of all \(N \)-bit integers, QN: set of all 1-1 onto functions \(M \rightarrow M \)

Alice: \(GE(pk, sk) \), \(pk \) is a random element of QN
send \(pk \) to Bob

Bob: \(k = EN(x, pk) \), \(x \) is a random \(N \)-bit integer
send \(k - j + 1 \) to Alice

Alice: \(y_u = DE(k - j + u, sp), u = 1, \ldots, 10 \)
\(z_u = y_u \mod p \), \(p \) is a random \(N/2 \)-bit prime
send \(p \) and \(z_1, \ldots, z_i, z_{i+1}, \ldots, z_{10} \) (10 numbers) to Bob

Bob: if \(j^\text{th}_z = x \mod p \), then \(i \geq j \); otherwise \(i < j \) \footnote{\(j^\text{th}_z = x + DE(-1, sk) + 1 \)}
send result to Alice

Step 3: Finding the most likely song index
Permute protocol: \(A' + B' = \Pi(A') + \Pi(B') \)

Bob: \(GE(pk, sk) \rightarrow EN(B_i, pk), i = 1, \ldots, K \)
send \(pk \) and all \(EN(B_i, pk) \) to Alice

Alice: \(\theta_i = EN(B_i, pk) \cdot EN(S_i, pk) = EN(B_i + S_i, pk), S_i \) random
\(\theta_i \rightarrow \pi(\theta_i) \), permutation (i.e. song index scrambling)
send all \(\pi(\theta_i) \) to Bob

Bob: \(B_i' = DE(\pi(\theta_i), sk) = \Pi(B_i + S_i) \)

Alice: \(A_i' = \Pi(A_i - S_i) \)

Final Step: Obtaining the desired information
Oblivious transfer: used in situations where the database is private

Alice: \(GE(pk, sk) \rightarrow z = EN(\sigma, pk), \ \sigma \) is the index of the song
send \(z \) to Bob

Bob: \(dk = EN(uk, pk) \ast (z \ast EN(-k, pk))^r_k, uk \) is the encoded catalog info
\(r_k \) random, \(k = 1, \ldots, K \)
send all \(dk = EN(uk + r_k(\sigma - k), pk) \) to Alice

Alice: \(DE(dk) = uk + r_k(\sigma - k) \)
use the \(\sigma \)-th value to obtain the desired information \(u_\sigma = DE(d\sigma) \)